Citation: | Linlin Li, Xinxiang Yu, Dongmin Xie, Ningning Peng, Weilin Wang, Decai Wang, Binglong Li. Influence of traditional Chinese medicines on the in vivo metabolism of lopinavir/ritonavir based on UHPLC-MS/MS analysis[J]. Journal of Pharmaceutical Analysis, 2022, 12(2): 270-277. doi: 10.1016/j.jpha.2021.06.006 |
Y. Li, W.-Z. Bai, T. Hashikawa, Response to Commentary on: "The neuroinvasive potential of SARS-CoV-2 may play a role in the respiratory failure of COVID-19 patients", J. Med. Virol. 92 (2020) 707-709
|
L. Setti, F. Passarini, G. de gennaro, et al., Airborne transmission route of COVID-19: Why 2 meters/6 feet of inter-personal distance could not be enough, Int. J. Environ. Res. Public Health 17 (2020), 2932
|
F. Yu, L. Du, D. Ojcius, et al., Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan, China, Microbes Infect. 22 (2020) 74-79
|
L. Ni, L. Zhou, M. Zhou, et al., Combination of western medicine and Chinese traditional patent medicine in treating a family case of COVID-19, Front. Med. 14 (2020) 210-214
|
COVID live update: 156,696,833 cases and 3,269,661 deaths. https://www.worldometers.info/coronavirus/. (Accessed 6 May 2021).
|
F. Wu, S. Zhao, B. Yu, et al., A new coronavirus associated with human respiratory disease in China, Nature. 579 (2020) 265-269
|
J.F.W. Chan, S.F. Yuan, K.H. Kok, et al., A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster, Lancet. 395 (2020) 514-523
|
J. Cui, F. Li, Z.L. Shi, Origin and evolution of pathogenic coronaviruses, Nat. Rev. Microbiol. 17 (2019) 181-192
|
H.A. Rothan, S.N. Byrareddy, The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak, J. Autoimmun 109 (2020), 102433
|
N. Zhu, D. Zhang, W. Wang, et al., A Novel Coronavirus from Patients with Pneumonia in China, 2019, New Engl. J. Med. 382 (2020) 727-733
|
S.Q. Deng, H.J. Peng, Characteristics of and Public Health Responses to the Coronavirus Disease 2019 Outbreak in China, J. Clin. Med. 9 (2020), 575
|
K. Knoops, M. Kikkert, S.H.E. van den Worm, et al., SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum, PLoS. Biol., 6 (2008) 1957-1974
|
D. Wrapp, N.S. Wang, K.S. Corbett, et al., Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, Science 367 (2020) 1260-1263
|
M. Hoffmann, H. Kleine-Weber, S. Schroeder, et al., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor, Cell 181 (2020) 271-280
|
Y.M. Báez-Santos, S.E. St John, A.D. Mesecar, The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds, Antiviral Res. 115 (2015) 21-38
|
J. Deval, Z.N. Jin, Y.C. Chuang, et al., Structure(s), function(s), and inhibition of the RNA-dependent RNA polymerase of noroviruses, Virus Res. 234 (2017) 21-33
|
C. del Rio, P.N. Malani, COVID-19-New Insights on a Rapidly Changing Epidemic, JAMA-J. Am. Med. Assoc. 323 (2020) 1339-1340
|
T. Wada, K. Shimode, T. Hoshiyama, et al., Three Novel COVID-19 Pneumonia Cases Successfully Treated With Lopinavir/Ritonavir, Front. Med. 7 (2020), 241
|
J. Mah Ming, M. Gill, Case Report: Drug-Induced Rhabdomyolysis after Concomitant Use of Clarithromycin, Atorvastatin, and Lopinavir/Ritonavir in a Patient with HIV, AIDS Patient Care & STDs. 17 (2003) 207-210
|
U. Zanger, M. Schwab, Cytochrome P450 Enzymes in Drug Metabolism: Regulation of Gene Expression, Enzyme Activities, and Impact of Genetic Variation, Pharmacol. Therapeut. 138 (2013) 103-141
|
P. Kaufmann, S. Niglis, S. Bruderer, et al., Effect of lopinavir/ritonavir on the pharmacokinetics of selexipag an oral prostacyclin receptor agonist and its active metabolite in healthy subjects: Lopinavir/ritonavir effects on selexipag pharmacokinetics, Br. J. Clin Pharmacol. 80 (2015) 670-677
|
J.F.W. Chan, Y.F. Yao, M.L. Yeung, et al., Treatment With Lopinavir/Ritonavir or Interferon-beta 1b Improves Outcome of MERS-CoV Infection in a Nonhuman Primate Model of Common Marmoset, J. Infect. Dis. 212 (2015) 1904-1913
|
S.K. Singh, Middle East Respiratory Syndrome Virus Pathogenesis, Semin. Respir. Crit. Care Med. 37 (2016) 572-577
|
C. Boulanger, V. Rolla, M.H. Al-Shaer, et al., Evaluation of super-boosted lopinavir/ritonavir in combination with rifampicin in HIV-1-infected patients with tuberculosis, Int. J. Antimicrob. Agents 55 (2020), 105840
|
T. Lancet, Emerging understandings of 2019-nCoV, The Lancet 395 (2020) 311-311
|
S. Lin, R. Shen, J. He, et al., Molecular modeling evaluation of the binding effect of ritonavir, lopinavir and darunavir to severe acute respiratory syndrome coronavirus 2 proteases, bioRxiv. https://www.biorxiv.org/content/10.1101/2020.01.31.929695v2. (Accessed 31 January 2020).
|
Diagnosis and treatment of corona virus disease-19 (7th trial edition). http://www.nhc.gov.cn/yzygj/s7653p/202003/46c9294a7dfe4cef80dc7f5912eb1989.shtml. (Accessed 4 March 2020).
|
Z.W. Wang, X.R. Chen, Y.F. Lu, et al., Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment, BioSci. Trends, 14 (2020) 64-68
|
National Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China, Chemical Industry Press, Beijing, 2015, pp.363-368
|
Center for Drug Evaluation, Guidance for Nonclinical Pharmacokinetics of Medicinal Products. https://www.cde.org.cn/zdyz/domesticinfopage?zdyzIdCODE=3e1a118fa1599529d3406fe6ee5821a5. (Accessed 13 May 2014).
|
Y.-m. Yao, J.-j. Sun, J. Chen, et al., LC-MS/MS method for simultaneous quantification of lopinavir and ritonavir in human plasma, Yao xue xue bao = Acta pharmaceutica Sinica, 45 (2010) 279-282
|
R. Verbesselt, E. Wijngaerden, J. Hoon, Simultaneous determination of 8 HIV protease inhibitors in human plasma by isocratic high-performance liquid chromatography with combined use of UV and fluorescence detection: Amprenavir, indinavir, atazanavir, ritonavir, lopinavir, saquinavir, nelfinavir and M8-nelfinavir metabolite, J. Chromatogr. B 845 (2007) 51-60
|
P. Wang, J. Wei, G. Kim, M. Chang, et al., Validation and application of a high-performance liquid chromatography-tandem mass spectrometric method for simultaneous quantification of lopinavir and ritonavir in human plasma using semi-automated 96-well liquid-liquid extraction, J. Chromatogr. A 1130 (2006) 302-307
|
M. Yadav, R. Rao, H. Kurani, et al., Application of a rapid and selective method for the simultaneous determination of protease inhibitors, lopinavir and ritonavir in human plasma by UPLC-ESI-MS/MS for bioequivalence study in Indian subjects, J. Pharm. Biomed. Anal. 49 (2009) 1115-1122
|
S. Chachad, A. Lulla, G. Malhotra, et al., Bioequivalence Study of Two Fixed Dose Combination Tablet Formulations of Lopinavir and Ritonavir in Healthy Volunteers, Arzneimittel-Forschung, 59 (2009) 263-268
|
S.K. Tippabhotla, N.R. Thudi, R. Raghuvanshi, et al., A bioequivalence study comparing two formulations of lopinavir/ritonavir capsules, Int. J. Clin. Pharmacol. Ther. 46 (2008) 204-210
|
R. Rahimi, M. Abdollahi, An update on the ability of St. John's wort to affect the metabolism of other drugs, Expert Opin. Drug Metab. Toxicol. 8 (2012) 691-708
|