Volume 11 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
Jian Chen, Hai-Fang Li, Guozhu Zhao, Jin-Ming Lin, Xiangwei He. Matrix-assisted laser desorption ionization mass spectrometry based quantitative analysis of cordycepin from Cordyceps militaris[J]. Journal of Pharmaceutical Analysis, 2021, 11(4): 499-504. doi: 10.1016/j.jpha.2021.05.003
Citation: Jian Chen, Hai-Fang Li, Guozhu Zhao, Jin-Ming Lin, Xiangwei He. Matrix-assisted laser desorption ionization mass spectrometry based quantitative analysis of cordycepin from Cordyceps militaris[J]. Journal of Pharmaceutical Analysis, 2021, 11(4): 499-504. doi: 10.1016/j.jpha.2021.05.003

Matrix-assisted laser desorption ionization mass spectrometry based quantitative analysis of cordycepin from Cordyceps militaris

doi: 10.1016/j.jpha.2021.05.003
Funds:

This work was financially supported by Fundamental Research Funds for the Central Universities (Grant No. 2019ZY31), and the National Natural Science Foundation of China (Grant Nos. 21775086 and 31770110).

  • Received Date: Mar. 09, 2021
  • Accepted Date: May 27, 2021
  • Rev Recd Date: Apr. 29, 2021
  • Available Online: Jan. 24, 2022
  • Publish Date: Aug. 15, 2021
  • Cordycepin, which has great immunomodulatory activities such as anticancer, antifungal, antivirus, antileukemia and lipid-lowering ones, is the secondary metabolite of Cordyceps militaris (C. militaris). Liquid submerged fermentation is the common cultivation process to produce cordycepin. To optimize the fermentation process and improve production, monitoring the cordycepin secretion in the fermentation is essential. The measurement based on chromatography-mass spectrometry methods is generally involved in the complex sample pretreatments and time-consuming separation, so more rapid and convenient methods are required. Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) is more attractive for faster and direct detection. Therefore, MALDI-MS detection combined with isotope-labeled internal standard was applied to the measurement of cordycepin content in the fermentation broth and mycelium. This method made accurate quantification of cordycepin in the range of 5–400 μg/mL with a relative standard deviation of 5.6%. The recovery rates of fermentation samples after the 1, 13, and 25 days were 90.15%, 94.27%, and 95.06%, respectively. The contents of cordycepin in the mycelium and fermentation broth were 136 mg/g and 148.39 mg/mL on the 20th culture day, respectively. The cordycepin secretion curve of the liquid fermentation of C. militaris was real-time traced over 25 days.
  • loading
  • S. Chamyuang, A. Owatworakit, Y. Honda, New insights into cordycepin production in Cordyceps militaris and applications, Ann. Transl. Med. 7 (2019), 1479-1489
    D. D. De Silva, S. Rapior, F. Fons, et al., Medicinal mushrooms in supportive cancer therapies: an approach to anti-cancer effects and putative mechanisms of action, Fungal Divers. 55 (2012), 1-35
    N. Yoshikawa, S. Yamada, C. Takeuchi, et al., Cordycepin (3'-deoxyadenosine) inhibits the growth of B16-BL6 mouse melanoma cells through the stimulation of adenosine A3 receptor followed by glycogen synthase kinase-3βactivation and cyclin D1 suppression, Naunyn-Schmied. Arch. Pharmacol. 377 (2008), 591-595
    A. M. Sugar, R. P. Mc Caffrey, Antifungal activity of 3'-deoxyadenosine (cordycepin), Antimicrob. Agents Chemother. 42 (1998), 1424-1427
    K. Hashimoto, B. Simizu, Effect of cordycepin on the replication of western equine encephalitis virus, Arch. Virol. 52 (1976), 341-345
    D. D. De Silva, S. Rapior, E. Sudarman, et al., Bioactive metabolites from macrofungi: ethnopharmacology, biological activities and chemistry, Fungal Divers. 62 (2013), 1-40
    D. D. De Silva, S. Rapior, K. D. Hyde, et al., Medicinal mushrooms in prevention and control of diabetes mellitus, Fungal Divers. 56 (2012), 1-29
    J.Y. Cha, H.Y. Ahn, Y.S. Cho, et al., Protective effect of cordycepin-enriched Cordyceps militaris on alcoholic hepatotoxicity in Sprague-Dawley rats, Food Chem. Toxicol. 60(2013), 52-57
    T.N. Quy, T.D. Xuan, Y. Andriana, et al., Cordycepin isolated from Cordyceps militaris: Its newly discovered herbicidal property and potential plant-based novel alternative to Glyphosate. Molecules 24(2019), 2901
    X. Li, Q. Liu, W. Li, et al., A breakthrough in the artificial cultivation of Chinese cordyceps on a large-scale and its impact on science, the economy, and industry, Crit. Rev. Biotechnol. 39 (2018), 181-191
    J. Yin, X. D. Xin, Y. J. Weng, et al., Genotypic analysis of degenerative Cordyceps militaris cultured in the pupa of Bombyx mori, Entomol. Res. 48 (2018), 137-144
    F. Wang, X. Song, X. H. Dong, et al., DASH-type cryptochromes regulate fruiting body development and secondary metabolism differently than CmWC-1 in the fungus Cordyceps militaris, Biotechnology 101 (2017), 4645-4657
    J. K. Yan, W. Q. Wang, J. Y. Wu, Recent advances in Cordyceps sinensis polysaccharides: Mycelial fermentation, isolation, structure, and bioactivities: A review, J. Funct. Foods 6 (2014), 33-47
    F. Q. Yang, L. Y. Ge, J. W. Yong, et al., Determination of nucleosides and nucleobases in different species of Cordyceps by capillary electrophoresis-mass spectrometry. J. Pharm. Biomed. Anal. 50 (2009), 307-314
    H. K. Hu, L. Xiao, B. G. Zheng, et al., Identification of chemical markers in Cordyceps sinensis by HPLC-MS/MS, Anal. Bioanal. Chem. 407 (2015), 8059-8066
    Z. B. Wang, N. Li, M. Wang, et al., Simultaneous determination of nucleosides and their bases in Cordyceps sinensis and its substitutes by matrix solid-phase dispersion extraction and HPLC, J. Sep. Sci. 36 (2013), 2348-2357
    M. Karas, F. Hillenkamp, Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons, Anal. Chem. 60 (1988), 2299-2301
    J. A. Castro, C. Koster, C. Wilkins, et al., Matrix-assisted laser desorption/ionization of high-mass molecules by Fourier-transform mass spectrometry, Rapid Commun. Mass Sp. 6 (2010), 239-241
    H. Z. Tang, Y. L. Ma, F. Liu, et al., Detection of small molecules using SBA-15 modified CHCA as a novel matrix of MALDI-TOF MS, Int. J. Mass Spectrom. 417 (2017), 34-39
    F. Zhao, Y. Q. Li, J. Wang, et al., Dual-ion-mode MALDI MS detection of small molecules with the O-P, N doped carbon/graphene matrix. ACS Appl. Mater. Interfaces 10 (2018), 37732-37742
    M. Li, S. F. Mao, S. Q. Wang, et al., Chip-based SALDI-MS for rapid determination of intracellular ratios of glutathione to glutathione disulfide, Sci. China Chem. 62 (2019), 142-150
    J. L. Dong, W. J. Ning, D. J. Mans, et al., A binary matrix for the rapid detection and characterization of small-molecule cardiovascular drugs by MALDI-MS and MS/MS, Anal. Methods 10 (2018), 572-578
    R. R. Catharino, L. de Azevendo Marques, L. Silva Santos, et al., Aflatoxin screening by MALDI-TOF mass spectrometry. Anal. Chem., 77 (2005), 8155-8157
    H. Y. Zhang, Y. H. Li, J. N. Mi, et al., GC-MS profiling of volatile components in different fermentation products of Cordyceps sinensis mycelia, Molecules 22 (2017), 1800
    Y. H. Cheng, Y. C. Hsieh, Y. H. Yu, Effect of Cordyceps militaris hot water extract on immunomodulation-associated gene expression in broilers, Gallus gallus, J. Poult. Sci. 56 (2019), 128-139
    D. Hu, Y. Chen, C. H. Sun, et al., Genome guided investigation of antibiotics producing actinomycetales strain isolated from a Macau mangrove ecosystem, Sci. Rep. 8 (2018), 14271
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (174) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return