| Citation: | Donata Pluskota-Karwatka, Marcin Hoffmann, Jan Barciszewski. Reducing SARS-CoV-2 pathological protein activity with small molecules[J]. Journal of Pharmaceutical Analysis, 2021, 11(4): 383-397. doi: 10.1016/j.jpha.2021.03.012 | 
	                | 
					 C.B. Hudson, F.R. Beaudette, Infection of the cloaca with the virus of Infectious bronchitis., Science. 76 (1932) 34-34 
						
					 | 
			
| 
					 D. Hamre, J.J. Procknow, A new virus isolated from the human respiratory tract., Proc. Soc. Exp. Biol. Med. 121 (1966) 190-193 
						
					 | 
			
| 
					 K. McIntosh, J.H. Dees, W.B. Becker, et al., Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease., Proc. Natl. Acad. Sci. U. S. A. 57 (1967) 933-940 
						
					 | 
			
| 
					 C. Wang, P.W. Horby, F.G. Hayden, et al., A novel coronavirus outbreak of global health concern., Lancet. 395 (2020) 470-473 
						
					 | 
			
| 
					 C. Chang, S.-C. Lo, Y.-S. Wang, et al., Recent insights into the development of therapeutics against coronavirus diseases by targeting N protein., Drug Discov. Today. 21 (2016) 562-572 
						
					 | 
			
| 
					 Y. Matoba, C. Abiko, T. Ikeda, et al., Detection of the human coronavirus 229E, HKU1, NL63, and OC43 between 2010 and 2013 in Yamagata, Japan., Jpn. J. Infect. Dis. 68 (2015) 138-141. https://doi.org/10.7883/yoken.JJID.2014.266 
						
					 | 
			
| 
					 E.R. Gaunt, A. Hardie, E.C.J. Claas, et al., Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method., J. Clin. Microbiol. 48 (2010) 2940-2947 
						
					 | 
			
| 
					 T. Kuiken, R.A.M. Fouchier, M. Schutten, et al., Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome., Lancet. 362 (2003) 263-270 
						
					 | 
			
| 
					 R. Hilgenfeld, From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design., FEBS J. 281 (2014) 4085-4096 
						
					 | 
			
| 
					 R. Hilgenfeld, M. Peiris, From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses., Antiviral Res. 100 (2013) 286-295 
						
					 | 
			
| 
					 A.M. Zaki, S. van Boheemen, T.M. Bestebroer, et al., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia., N. Engl. J. Med. 367 (2012) 1814-1820 
						
					 | 
			
| 
					 Z. Song, Y. Xu, L. Bao, et al., From SARS to MERS, thrusting coronaviruses into the spotlight, viruses., 11 (2019) 59 
						
					 | 
			
| 
					 R.K. Guy, R.S. DiPaola, F. Romanelli, et al., Rapid repurposing of drugs for COVID-19., Science. 368 (2020) 829-830 
						
					 | 
			
| 
					 B. Tang, N.L. Bragazzi, Q. Li, et al., An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov)., Infect. Dis. Model. 5 (2020) 248-255 
						
					 | 
			
| 
					 N. Zhu, D. Zhang, W. Wang, et al., China novel coronavirus investigating and research team, a novel coronavirus from patients with pneumonia in China, 2019., N. Engl. J. Med. 382 (2020) 727-733 
						
					 | 
			
| 
					 J.J. Rossi, D. Rossi, Oligonucleotides and the COVID-19 pandemic: a perspective., Nucleic Acid Ther. 30 (2020) 129-132 
						
					 | 
			
| 
					 E.A. J Alsaadi, I.M. Jones, Membrane binding proteins of coronaviruses., Future Virol. 14 (2019) 275-286 
						
					 | 
			
| 
					 P.S. Masters, The Molecular Biology of Coronaviruses: Adv. Virus Res., Academic Press, 2006: pp. 193-292 
						
					 | 
			
| 
					 e Wilde A.H., Snijder E.J., Kikkert M., Host Factors in Coronavirus Replication in: Roles of Host Gene and Non-coding RNA Expression in Virus Infection, Vol. 419, Springer, Switzerland, 2018, pp. 113-150 
						
					 | 
			
| 
					 C. Liu, Q. Zhou, Y. Li, et al., Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases., ACS Cent. Sci. 6 (2020) 315-331 
						
					 | 
			
| 
					 S. Payne, Family Coronaviridae., Viruses. (2017) 149-158 
						
					 | 
			
| 
					 S. Jiang, C. Hillyer, L. Du, Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses., Trends Immunol. 41 (2020) 355-359 
						
					 | 
			
| 
					 F.A. Rabi, M.S. Al Zoubi, G.A. Kasasbeh, et al., SARS-CoV-2 and coronavirus disease 2019: What we know so far., Pathog. 9 (2020) 231 
						
					 | 
			
| 
					 A.C. Walls, Y.-J. Park, M.A. Tortorici, et al., Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein., Cell. 181 (2020) 281-292 
						
					 | 
			
| 
					 P.K. Panda, M.N. Arul, P. Patel, et al., Structure-based drug designing and immunoinformatics approach for SARS-CoV-2., Sci. Adv. 6 (2020) eabb8097" 
						
					 | 
			
| 
					 F. Hikmet, L. Mear, A. Edvinsson, et al., The protein expression profile of ACE2 in human tissues., Mol. Syst. Biol. 16 (2020) e9610" 
						
					 | 
			
| 
					 L. Cantuti-Castelvetri, R. Ojha, L.D. Pedro, et al., Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity., Science. 370 (2020) 856-860 
						
					 | 
			
| 
					 G. Guo, L. Ye, K. Pan, et al., New insights of emerging SARS-CoV-2: Epidemiology, etiology, clinical features, clinical treatment, and prevention., Front. Cell Dev. Biol. 8 (2020) 410 
						
					 | 
			
| 
					 M.A. Shereen, S. Khan, A. Kazmi, et al., COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses., J. Adv. Res. 24 (2020) 91-98 
						
					 | 
			
| 
					 I. Astuti, Ysrafil, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response., Diabetes Metab. Syndr. 14 (2020) 407-412 
						
					 | 
			
| 
					 F. Wu, S. Zhao, B. Yu, et al., A new coronavirus associated with human respiratory disease in China., Nature. 579 (2020) 265-269 
						
					 | 
			
| 
					 S. Ludwig, A. Zarbock, Coronaviruses and SARS-CoV-2: A brief overview., Anesth. Analg. 131 (2020) 93-96 
						
					 | 
			
| 
					 H.S. Dagur, S. Dhakar, Genome organization of Covid-19 and emerging Severe Acute Respiratory Syndrome Covid-19 outbreak: A Pandemic., Eurasian J. Med. Oncol. 4 (2020) 107-115 
						
					 | 
			
| 
					 A.A.T. Naqvi, K. Fatima, T. Mohammad, et al., Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach., Biochim. Biophys. Acta - Mol. Basis Dis. 1866 (2020) 165878 
						
					 | 
			
| 
					 C. Ceraolo, F.M. Giorgi, Genomic variance of the 2019-nCoV coronavirus., J. Med. Virol. 92 (2020) 522-528 
						
					 | 
			
| 
					 A. Wu, Y. Peng, B. Huang, et al., Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China., Cell Host Microbe. 27 (2020) 325-328 
						
					 | 
			
| 
					 D. Bojkova, K. Klann, B. Koch, et al., Proteomics of SARS-CoV-2-infected host cells reveals therapy targets., Nature. 583 (2020) 469-472 
						
					 | 
			
| 
					 A.D. Davidson, M.K. Williamson, S. Lewis, et al., Characterisation of the transcriptome and proteome of SARS-CoV-2 reveals a cell passage induced in-frame deletion of the furin-like cleavage site from the spike glycoprotein., Genome Med. 12 (2020) 68 
						
					 | 
			
| 
					 Y. Finkel, O. Mizrahi, A. Nachshon, et al., The coding capacity of SARS-CoV-2., Nature. (2020) 1-9 
						
					 | 
			
| 
					 W. Dai, B. Zhang, X.-M. Jiang, et al., Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease., Science. 368 (2020) 1331-1335. https://doi.org/10.1126/science.abb4489 
						
					 | 
			
| 
					 L. Zhang, D. Lin, X. Sun, et al., Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors., Science. 368 (2020) 409-412 
						
					 | 
			
| 
					 S. Ullrich, C. Nitsche, The SARS-CoV-2 main protease as drug target., Bioorg. Med. Chem. Lett. 30 (2020) 127377 
						
					 | 
			
| 
					 E. Estrada, Topological analysis of SARS CoV-2 main protease., Chaos Interdiscip. J. Nonlinear Sci. 30 (2020) 061102 
						
					 | 
			
| 
					 T. Muramatsu, Y.-T. Kim, W. Nishii, et al., Autoprocessing mechanism of severe acute respiratory syndrome coronavirus 3C-like protease (SARS-CoV 3CLpro) from its polyproteins, FEBS J. 280 (2013) 2002-2013 
						
					 | 
			
| 
					 T. Pillaiyar, M. Manickam, V. Namasivayam, et al., An overview of Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy., J. Med. Chem. 59 (2016) 6595-6628 
						
					 | 
			
| 
					 M. Tahir ul Qamar, S.M. Alqahtani, M.A. Alamri, et al., Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants., J. Pharm. Anal. 10 (2020) 313-319 
						
					 | 
			
| 
					 Z. Jin, X. Du, Y. Xu, et al., Structure of M pro from SARS-CoV-2 and discovery of its inhibitors., Nature. 582 (2020) 289-293 
						
					 | 
			
| 
					 Y. Cai, J. Zhang, T. Xiao, et al., Distinct conformational states of SARS-CoV-2 spike protein., Science. 369 (2020) 1586-1592 
						
					 | 
			
| 
					 D. Wrapp, N. Wang, K.S. Corbett, et al., Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation., Science. 367 (2020) 1260-1263 
						
					 | 
			
| 
					 Q. Wang, Y. Qiu, J.-Y. Li, et al., A unique protease cleavage sPredicted in the spike protein of the novel pneumonia coronavirus (2019-nCoV) potentially related to viral transmissibility., Virol. Sin. 35 (2020) 337-339 
						
					 | 
			
| 
					 M. Hoffmann, H. Kleine-Weber, S. Pohlmann, A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells., Mol. Cell. 78 (2020) 779-784 
						
					 | 
			
| 
					 J. Shang, Y. Wan, C. Luo, et al., Cell entry mechanisms of SARS-CoV-2., Proc. Natl. Acad. Sci. USA. 117 (2020) 11727-11734 
						
					 | 
			
| 
					 M. Hoffmann, H. Kleine-Weber, S. Schroeder, et al., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor., Cell. 181 (2020) 271-280 
						
					 | 
			
| 
					 C. Toelzer, K. Gupta, S.K.N. Yadav, et al., Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein., Science. 370 (2020) 725-730 
						
					 | 
			
| 
					 J.A. Plante, Y. Liu, J. Liu, et al., Spike mutation D614G alters SARS-CoV-2 fitness., Nature. (2020) https://doi.org/10.1038/s41586-020-2895-3 
						
					 | 
			
| 
					 C. Yin, Genotyping coronavirus SARS-CoV-2: methods and implications, Genomics. 112 (2020) 3588-3596 
						
					 | 
			
| 
					 W. Yin, C. Mao, X. Luan, et al., Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir., Science. 368 (2020) 1499-1504 
						
					 | 
			
| 
					 J. Ahmad, S. Ikram, F. Ahmad, et al., SARS-CoV-2 RNA dependent RNA polymerase (RdRp) - a drug repurposing study., Heliyon. 6 (2020) e04502" 
						
					 | 
			
| 
					 Y. Gao, L. Yan, Y. Huang, et al., Structure of the RNA-dependent RNA polymerase from COVID-19 virus., Science. 368 (2020) 779-782 
						
					 | 
			
| 
					 H.S. Hillen, G. Kokic, L. Farnung, et al., Structure of replicating SARS-CoV-2 polymerase., Nature. 584 (2020) 154-156 
						
					 | 
			
| 
					 R.N. Kirchdoerfer, A.B. Ward, Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors., Nat. Commun. 10 (2019) https://doi.org/10.1038/s41467-019-10280-3 
						
					 | 
			
| 
					 D. Shin, R. Mukherjee, D. Grewe, et al., Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity., Nature. 584 (2020) 154-156 
						
					 | 
			
| 
					 S.G. Devaraj, N. Wang, Z. Chen, et al., Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus., J. Biol. Chem. 282 (2007) 32208-32221 
						
					 | 
			
| 
					 Y.M. Baez-Santos, S.E. St. John, A.D. Mesecar, The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds., Antiviral Res. 115 (2015) 21-38 
						
					 | 
			
| 
					 Y. Liang, M.-L. Wang, C.-S. Chien, et al., Highlight of immune pathogenic response and hematopathologic effect in SARS-CoV, MERS-CoV, and SARS-Cov-2 infection., Front. Immunol. 11 (2020) 1022 
						
					 | 
			
| 
					 D. Schoeman, B.C. Fielding, Coronavirus envelope protein: current knowledge., Virol. J. 16 (2019) 69 
						
					 | 
			
| 
					 B.W. Neuman, G. Kiss, A.H. Kunding, et al., A structural analysis of M protein in coronavirus assembly and morphology., J. Struct. Biol. 174 (2011) 11-22 
						
					 | 
			
| 
					 S.F. Ahmed, A.A. Quadeer, M.R. McKay, Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies., Viruses. 12 (2020) 254 
						
					 | 
			
| 
					 R. McBride, M. van Zyl, B.C. Fielding, The coronavirus nucleocapsid is a multifunctional protein., Viruses. 6 (2014) 2991-3018 
						
					 | 
			
| 
					 S. Kang, M. Yang, Z. Hong, et al., Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites., Acta Pharm. Sin. B. 10 (2020) 1228-1238 
						
					 | 
			
| 
					 T. Shu, M. Huang, D. Wu, et al., SARS-Coronavirus-2 Nsp13 possesses NTPase and RNA helicase activities that can be inhibited by bismuth salts., Virol. Sin. 35 (2020) 321-329 
						
					 | 
			
| 
					 M.U. Mirza, M. Froeyen, Structural elucidation of SARS-CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase., J. Pharm. Anal. 10 (2020) 320-328 
						
					 | 
			
| 
					 Y. Ren, T. Shu, D. Wu, et al., The ORF3a protein of SARS-CoV-2 induces apoptosis in cells., Cell. Mol. Immunol. 17 (2020) 881-883 
						
					 | 
			
| 
					 J.-Y. Li, C.-H. Liao, Q. Wang, et al., The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway., Virus Res. 286 (2020) 198074 
						
					 | 
			
| 
					 T.G. Flower, C.Z. Buffalo, R.M. Hooy, et al., Structure of SARS-CoV-2 ORF8, a rapidly evolving immune evasion protein., Proc. Natl. Acad. Sci. 118 (2021) e2021785118" 
						
					 | 
			
| 
					 G. Miao, H. Zhao, Y. Li, et al., ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation., Dev. Cell. (2020) https://doi.org/10.1016/j.devcel.2020.12.010 
						
					 | 
			
| 
					 K. Narayanan, C. Huang, S. Makino, SARS coronavirus accessory proteins., Virus Res. 133 (2008) 113-121 
						
					 | 
			
| 
					 R. McBride, B.C. Fielding, The Role of Severe Acute Respiratory Syndrome (SARS)-Coronavirus accessory proteins in virus pathogenesis., Viruses. 4 (2012) 2902-2923 
						
					 | 
			
| 
					 L. Zinzula, Lost in deletion: The enigmatic ORF8 protein of SARS-CoV-2., Biochem. Biophys. Res. Commun. (2020) https://doi.org/10.1016/j.bbrc.2020.10.045 
						
					 | 
			
| 
					 R. Arya, S. Kumari, B. Pandey, et al., Structural insights into SARS-CoV-2 proteins., J. Mol. Biol. 433 (2021) 166725 
						
					 | 
			
| 
					 P. Majumdar, S. Niyogi, ORF3a mutation associated with higher mortality rate in SARS-CoV-2 infection., Epidemiol. Infect. 148 (2020) E262. doi: 10.1017/S0950268820002599 
						
					 | 
			
| 
					 A. Hachim, N. Kavian, C.A. Cohen, et al., ORF8 and ORF3b antibodies are accurate serological markers of early and late SARS-CoV-2 infection., Nat. Immunol. 21 (2020) 1293-1301 
						
					 | 
			
| 
					 X. Lei, X. Dong, R. Ma, et al., Activation and evasion of type I interferon responses by SARS-CoV-2., Nat. Commun. 11 (2020) 3810 
						
					 | 
			
| 
					 F. Pereira, Evolutionary dynamics of the SARS-CoV-2 ORF8 accessory gene., Infect. Genet. Evol. 85 (2020) 104525 
						
					 | 
			
| 
					 A. Addetia, H. Xie, P. Roychoudhury, et al., Identification of multiple large deletions in ORF7a resulting in in-frame gene fusions in clinical SARS-CoV-2 isolates., J. Clin. Virol. 129 (2020) 104523 
						
					 | 
			
| 
					 K. Pancer, A. Milewska, K. Owczarek, et al., The SARS-CoV-2 ORF10 is not essential in vitro or in vivo in humans., PLOS Pathog. 16 (2020) e1008959" 
						
					 | 
			
| 
					 I.X. Wang, E. So, J.L. Devlin, et al., ADAR regulates RNA editing, transcript stability, and gene expression., Cell Rep. 5 (2013) 849-860 
						
					 | 
			
| 
					 S.M. Rueter, C.M. Burns, S.A. Coode, et al., Glutamate receptor RNA editing in vitro by enzymatic conversion of adenosine to inosine., Science. 267 (1995) 1491-1494 
						
					 | 
			
| 
					 J.H. Yang, P. Sklar, R. Axel, et al., Editing of glutamate receptor subunit B pre-mRNA in vitro by site-specific deamination of adenosine., Nature. 374 (1995) 77-81 
						
					 | 
			
| 
					 C.S. Nabel, S.A. Manning, R.M. Kohli, The curious chemical biology of cytosine: deamination, methylation, and oxidation as modulators of genomic potential., ACS Chem. Biol. 7 (2012) 20-30 
						
					 | 
			
| 
					 R. Sah, A.J. Rodriguez-Morales, R. Jha, et al., Complete genome sequence of a 2019 novel coronavirus (SARS-CoV-2) strain Isolated in nepal., Microbiol. Resour. Announc. 9 (2020) e00169-20 https://doi.org/10.1128/MRA.00169-20 
						
					 | 
			
| 
					 K. Pyrc, M.F. Jebbink, B. Berkhout, et al., Genome structure and transcriptional regulation of human coronavirus NL63., Virol. J. 1 (2004) 7 
						
					 | 
			
| 
					 S.D. Giorgio, F. Martignano, M.G. Torcia, et al., Evidence for host-dependent RNA editing in the transcriptome of SARS-CoV-2., Sci. Adv. 6 (2020) eabb5813" 
						
					 | 
			
| 
					 N. Sinha, G. Balayla, Hydroxychloroquine and covid-19., Postgrad. Med. J. 96 (2020) 550-555 
						
					 | 
			
| 
					 R. Choudhary, A.K. Sharma, Potential use of hydroxychloroquine, ivermectin and azithromycin drugs in fighting COVID-19: trends, scope and relevance., New Microbes New Infect. 35 (2020) 100684 
						
					 | 
			
| 
					 J. Andreani, M. Le Bideau, I. Duflot, et al., In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect., Microb. Pathog. 145 (2020) 104228 
						
					 | 
			
| 
					 A.J. Siddiqui, S. Jahan, S.A. Ashraf, et al., Current status and strategic possibilities on potential use of combinational drug therapy against COVID-19 caused by SARS-CoV-2., J. Biomol. Struct. Dyn. (2020) 1-14 
						
					 | 
			
| 
					 J. Liu, R. Cao, M. Xu, et al., Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro., Cell Discov. 6 (2020) 1-4 
						
					 | 
			
| 
					 R.E. Ferner, J.K. Aronson, Chloroquine and hydroxychloroquine in covid-19., BMJ. 369 (2020) m1432 
						
					 | 
			
| 
					 J. Geleris, Y. Sun, J. Platt, et al., Observational study of hydroxychloroquine in hospitalized patients with Covid-19., N. Engl. J. Med. 382 (2020) 2411-2418 
						
					 | 
			
| 
					 A. Asai, M. Konno, M. Ozaki, et al., COVID-19 drug discovery using intensive approaches., Int. J. Mol. Sci. 21 (2020) 2839 
						
					 | 
			
| 
					 D. Huang, H. Yu, T. Wang, et al., Efficacy and safety of umifenovir for coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis., J. Med. Virol. 93 (2021) 481-490 
						
					 | 
			
| 
					 R. Wu, L. Wang, H.-C.D. Kuo, et al., An update on current therapeutic drugs treating COVID-19., Curr. Pharmacol. Rep. 6 (2020) 56-70 
						
					 | 
			
| 
					 J. Villalain, Membranotropic effects of arbidol, a broad anti-viral molecule, on phospholipid model membranes., J. Phys. Chem. B. 114 (2010) 8544-8554 
						
					 | 
			
| 
					 I.A. Leneva, R.J. Russell, Y.S. Boriskin, et al., Characteristics of arbidol-resistant mutants of influenza virus: Implications for the mechanism of anti-influenza action of arbidol., Antiviral Res. 81 (2009) 132-140 
						
					 | 
			
| 
					 X. Wang, R. Cao, H. Zhang, et al., The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro., Cell Discov. 6 (2020) 1-5 
						
					 | 
			
| 
					 N. Lian, H. Xie, S. Lin, et al., Umifenovir treatment is not associated with improved outcomes in patients with coronavirus disease 2019: a retrospective study., Clin. Microbiol. Infect. 26 (2020) 917-921 
						
					 | 
			
| 
					 A. Aktas, B. Tuzun, R. Aslan, et al., New anti-viral drugs for the treatment of COVID-19 instead of favipiravir., J. Biomol. Struct. Dyn. (2020) 1-11 
						
					 | 
			
| 
					 C.-C. Lu, M.-Y. Chen, W.-S. Lee, et al., Potential therapeutic agents against COVID-19: What we know so far., J. Chin. Med. Assoc. 83 (2020) 534-536 
						
					 | 
			
| 
					 S.M. Hashemian, T. Farhadi, A.A. Velayati, A review on remdesivir: A possible promising agent for the treatment of COVID-19., Drug Des. Devel. Ther. 14 (2020) 3215-3222 
						
					 | 
			
| 
					 D. Siegel, H.C. Hui, E. Doerffler, et al., Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo[2,1-f][triazin-4-amino] adenine C-nucleoside (GS-5734) for the treatment of ebola and emerging viruses., J. Med. Chem. 60 (2017) 1648-1661 
						
					 | 
			
| 
					 C.J. Gordon, E.P. Tchesnokov, E. Woolner, et al., Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency., J. Biol. Chem. 295 (2020) 6785-6797 
						
					 | 
			
| 
					 E.P. Tchesnokov, J.Y. Feng, D.P. Porter, et al., Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir., Viruses. 11 (2019) 326 
						
					 | 
			
| 
					 M.L. Agostini, E.L. Andres, A.C. Sims, et al., Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease., MBio. 9 (2018) e00221-18" 
						
					 | 
			
| 
					 A.J. Brown, J.J. Won, R.L. Graham, et al., Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase., Antiviral Res. 169 (2019) 104541 
						
					 | 
			
| 
					 T.P. Sheahan, A.C. Sims, R.L. Graham, et al., Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses., Sci. Transl. Med. 9 (2017) eaal3653" 
						
					 | 
			
| 
					 T.P. Sheahan, A.C. Sims, S.R. Leist, et al., Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV., Nat. Commun. 11 (2020) 222 
						
					 | 
			
| 
					 J.H. Beigel, K.M. Tomashek, L.E. Dodd, et al., Remdesivir for the treatment of Covid-19 - preliminary report., N. Engl. J. Med. 383 (2020) 1813-1826 
						
					 | 
			
| 
					 Dexamethasone in Hospitalized Patients with Covid-19 - Preliminary Report, N. Engl. J. Med. 0 (2020) null. https://doi.org/10.1056/NEJMoa2021436 
						
					 | 
			
| 
					 K. Duan, B. Liu, C. Li, et al., Effectiveness of convalescent plasma therapy in severe COVID-19 patients., Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 9490-9496 
						
					 | 
			
| 
					 H.-I. Shih, C.-J. Wu, Y.-F. Tu, et al., Fighting COVID-19: A quick review of diagnoses, therapies, and vaccines., Biomed. J. 43 (2020) 341-354 
						
					 | 
			
| 
					 M. Marovich, J.R. Mascola, M.S. Cohen, Monoclonal antibodies for prevention and treatment of COVID-19., JAMA. 324 (2020) 131-132 
						
					 | 
			
| 
					 K. Asha, P. Kumar, M. Sanicas, et al., Advancements in nucleic acid based therapeutics against respiratory viral infections., J. Clin. Med. 8 (2019) 6 
						
					 | 
			
| 
					 N. Agrawal, P.V.N. Dasaradhi, A. Mohmmed, et al., RNA interference: Biology, mechanism, and applications., Microbiol. Mol. Biol. Rev. 67 (2003) 657-685 
						
					 | 
			
| 
					 Z. Wang, L. Ren, X. Zhao, et al., Inhibition of Severe Acute Respiratory Syndrome Virus replication by small interfering RNAs in mammalian cells., J. Virol. 78 (2004) 7523-7527 
						
					 | 
			
| 
					 C.-J. Wu, H.-W. Huang, C.-Y. Liu, et al., Inhibition of SARS-CoV replication by siRNA., Antiviral Res. 65 (2005) 45-48 
						
					 | 
			
| 
					 Y. Zhang, T. Li, L. Fu, et al., Silencing SARS-CoV spike protein expression in cultured cells by RNA interference., FEBS Lett. 560 (2004) 141-146 
						
					 | 
			
| 
					 A. Fukushima, N. Fukuda, Y. Lai, et al., Development of a chimeric DNA-RNA hammerhead ribozyme targeting SARS virus., Intervirology. 52 (2009) 92-99 
						
					 | 
			
| 
					 C.F. Bennett, E.E. Swayze, RNA targeting therapeutics: Molecular mechanisms of antisense oligonucleotides as a therapeutic platform., Annu. Rev. Pharmacol. Toxicol. 50 (2010) 259-293 
						
					 | 
			
| 
					 B.W. Neuman, D.A. Stein, A.D. Kroeker, et al., Inhibition and escape of SARS-CoV treated with antisense morpholino oligomers, in: S. Perlman, K.V. Holmes (Eds.), The Nidoviruses, Springer US, Boston, MA, 2006: pp. 567-571 
						
					 | 
			
| 
					 B.W. Neuman, D.A. Stein, A.D. Kroeker, et al, Inhibition, escape, and attenuated growth of Severe Acute Respiratory Syndrome Coronavirus treated with antisense morpholino oligomers., J. Virol. 79 (2005) 9665-9676 
						
					 | 
			
| 
					 R.L. Kruse, Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China., F1000Research. 9 (2020) 72 
						
					 | 
			
| 
					 A.M. Sayed, H.A. Alhadrami, A.O. El-Gendy, et al., Microbial natural products as potential inhibitors of SARS-CoV-2 main protease (Mpro)., Microorganisms. 8 (2020) 970 
						
					 | 
			
| 
					 A. da S. Antonio, L.S.M. Wiedemann, V.F. Veiga-Junior, Natural products role against COVID-19., RSC Adv. 10 (2020) 23379-23393 
						
					 | 
			
| 
					 C.-C. Wen, Y.-H. Kuo, J.-T. Jan, et al., Specific plant terpenoids and lignoids possess potent antiviral activities against Severe Acute Respiratory Syndrome Coronavirus., J. Med. Chem. 50 (2007) 4087-4095 
						
					 | 
			
| 
					 R.S. Joshi, S.S. Jagdale, S.B. Bansode, et al., Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease., J. Biomol. Struct. Dyn. (2020) 1-16 
						
					 | 
			
| 
					 Z. Liu, Y. Ying, The Inhibitory Effect of Curcumin on Virus-Induced Cytokine Storm and Its Potential Use in the Associated Severe Pneumonia, Front. Cell Dev. Biol. 8 (2020). https://doi.org/10.3389/fcell.2020.00479 
						
					 | 
			
| 
					 J. Dai, L. Gu, Y. Su, et al., Inhibition of curcumin on influenza A virus infection and influenzal pneumonia via oxidative stress, TLR2/4, p38/JNK MAPK and NF-κB pathways., Int. Immunopharmacol. 54 (2018) 177-187 
						
					 | 
			
| 
					 B. Zhang, S. Swamy, S. Balijepalli, et al., Direct pulmonary delivery of solubilized curcumin reduces severity of lethal pneumonia., FASEB J. 33 (2019) 13294-13309 
						
					 | 
			
| 
					 L. Chen, Y. Lu, L. Zhao, et al., Curcumin attenuates sepsis-induced acute organ dysfunction by preventing inflammation and enhancing the suppressive function of Tregs., Int. Immunopharmacol. 61 (2018) 1-7 
						
					 | 
			
| 
					 Y. Chai, Y. Chen, S. Lin,et al., Curcumin regulates the differentiation of naive CD4+T cells and activates IL-10 immune modulation against acute lung injury in mice., Biomed. Pharmacother. 125 (2020) 109946 
						
					 | 
			
| 
					 Y. Ren, Z. Yang, Z. Sun, et al., Curcumin relieves paraquat-induced lung injury through inhibiting the thioredoxin interacting protein/NLR pyrin domain containing 3-mediated inflammatory pathway., Mol. Med. Rep. 20 (2019) 5032-5040 
						
					 | 
			
| 
					 N. Pannu, A. Bhatnagar, Resveratrol: from enhanced biosynthesis and bioavailability to multitargeting chronic diseases., Biomed. Pharmacother. 109 (2019) 2237-2251 
						
					 | 
			
| 
					 S. Zupancic, Z. Lavric, J. Kristl, Stability and solubility of trans-resveratrol are strongly influenced by pH and temperature., Eur. J. Pharm. Biopharm. 93 (2015) 196-204 
						
					 | 
			
| 
					 A. Chimento, F. De Amicis, R. Sirianni, et al., Progress to improve oral bioavailability and beneficial effects of resveratrol., Int. J. Mol. Sci. 20 (2019) 1381 
						
					 | 
			
| 
					 S. Filardo, M. Di Pietro, P. Mastromarino, et al., Therapeutic potential of resveratrol against emerging respiratory viral infections., Pharmacol. Ther. 214 (2020) 107613 
						
					 | 
			
| 
					 Y.-Q. Li, Z.-L. Li, W.-J. Zhao, et al., Synthesis of stilbene derivatives with inhibition of SARS coronavirus replication., Eur. J. Med. Chem. 41 (2006) 1084-1089 
						
					 | 
			
| 
					 H.M. Wahedi, S. Ahmad, S.W. Abbasi, Stilbene-based natural compounds as promising drug candidates against COVID-19., J. Biomol. Struct. Dyn. (2020) 1-10 
						
					 | 
			
| 
					 H. Khodadadi, E.L. Salles, A. Jarrahi, et al., Cannabidiol modulates cytokine storm in acute respiratory distress syndrome induced by simulated viral infection using synthetic RNA., Cannabis Cannabinoid Res. 5 (2020) 197-201 
						
					 | 
			
| 
					 T.E. Bozkurt, Endocannabinoid system in the airways., Molecules. 24 (2019) 4626 
						
					 | 
			
| 
					 M. Ackermann, S.E. Verleden, M. Kuehnel, et al., Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19., N. Engl. J. Med. 383 (2020) 120-128 
						
					 | 
			
| 
					 T.J. Oxley, J. Mocco, S. Majidi, et al., Large-vessel stroke as a presenting feature of Covid-19 in the young., N. Engl. J. Med. 382 (2020) e60" 
						
					 | 
			
| 
					 Q. Zhang, P. Bastard, Z. Liu, et al., Inborn errors of type I IFN immunity in patients with life-threatening COVID-19., Science. 370 (2020) eabd4570" 
						
					 | 
			
| 
					 P. Bastard, L.B. Rosen, Q. Zhang, et al., Auto-antibodies against type I IFNs in patients with life-threatening COVID-19, Science. 370 (2020) eabd4585" 
						
					 |