Volume 11 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
Leonny Dwi Rizkita, Indwiani Astuti. The potential of miRNA-based therapeutics in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: A review[J]. Journal of Pharmaceutical Analysis, 2021, 11(3): 265-271. doi: 10.1016/j.jpha.2021.03.003
Citation: Leonny Dwi Rizkita, Indwiani Astuti. The potential of miRNA-based therapeutics in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: A review[J]. Journal of Pharmaceutical Analysis, 2021, 11(3): 265-271. doi: 10.1016/j.jpha.2021.03.003

The potential of miRNA-based therapeutics in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: A review

doi: 10.1016/j.jpha.2021.03.003
  • Received Date: Sep. 30, 2020
  • Accepted Date: Mar. 16, 2021
  • Rev Recd Date: Mar. 12, 2021
  • Available Online: Jan. 24, 2022
  • Publish Date: Jun. 15, 2021
  • Since the World Health Organization (WHO) declared COVID-19, the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as a pandemic in March 2020, and more than 117 million people worldwide have been confirmed to have been infected. Scientists, medical professionals, and other stakeholders are racing against time to find and develop effective medicines for COVID-19. However, no drug with high efficacy to treat SARS-CoV-2 infection has been approved. With the increasing popularity of gene therapy, scientists have explored the utilization of small RNAs such as microRNAs (miRNAs) as therapeutics. miRNAs are non-coding RNAs with high affinity for the 3′-UTRs of targeted messenger RNAs (mRNAs). Interactions between host cells and viral genomes may induce the upregulation or downregulation of various miRNAs. Therefore, understanding the expression patterns of these miRNAs and their functions will provide insights into potential miRNA-based therapies. This review systematically summarizes the potential targets of miRNA-based therapies for SARS-CoV-2 infection and examines the viability of possible transfection methods.
  • loading
  • N. Mitash, J.E. Donovan, A. Swiatecka-Urban, The role of microrna in the airway surface liquid homeostasis, Int. J. Mol. Sci. 21 (2020), 3848
    C. Nishioka, T. Ikezoe, B. Pan, et al., MicroRNA-9 plays a role in interleukin-10-mediated expression of E-cadherin in acute myelogenous leukemia cells, Cancer Sci. 108 (2017) 685-695
    C.T. Pager, K.A. Wehner, G. Fuchs, P. Sarnow, Chapter 5 MicroRNA-Mediated Gene Silencing, in: J.W.B. Hershey (Ed), Progress in Mollecular Biology and Translational Science vol. 90 1st Edition., Elsevier Inc., 2009: pp. 187-210
    A.N. Mekuria, A.D. Abdi, K.M. Mishore, MicroRNAs as a potential target for cancer therapy, J. Cancer Sci. Ther. 10 (2018) 152-161
    N. Hosseinahli, M. Aghapour, P.H.G. Duijf, et al., Treating cancer with microRNA replacement therapy: A literature review, J. Cell. Physiol. 233 (2018) 5574-5588
    M. Bhaskaran, M. Mohan, MicroRNAs: History, Biogenesis, and Their Evolving Role in Animal Development and Disease, Vet. Pathol. 51 (2014) 759-774
    D.P. Bartel, MicroRNAs: Target Recognition and Regulatory Functions, Cell. 136 (2009) 215-233
    J.L. Umbach, B.R. Cullen, The role of RNAi and microRNAs in animal virus replication and antiviral immunity, Genes Dev. 23 (2009) 1151-1164
    B. Eilam Frenkel, H. Naaman, G. Berkic, et al., MicroRNA 146-5p, miR-let-7c-5p, miR-221 and miR-345-5p are differentially expressed in Respiratory Syncytial Virus (RSV) persistently infected HEp-2 cells, Virus Res. 251 (2018) 34-39
    J. O’Brien, H. Hayder, Y. Zayed, et al., Overview of microRNA biogenesis, mechanisms of actions, and circulation, Front. Endocrinol. (Lausanne). 9 (2018) 1-12
    G. Tan, X. Tang, F. Tang, The role of microRNAs in nasopharyngeal carcinoma, Tumor Biol. 36 (2014) 69-79
    H. Mollaei, R. Safaralizadeh, Z. Rostami, MicroRNA replacement therapy in cancer, J. Cell. Physiol. (2019) 1-16
    S. Saini, A. Saini, C.J. Thakur, et al., Genome-wide computational prediction of miRNAs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed target genes involved in pulmonary vasculature and antiviral innate immunity, Mol. Biol. Res. Commun. 9 (2020) 83-91
    K. Chandan, M. Gupta, M. Sarwat, Role of Host and Pathogen-Derived MicroRNAs in Immune Regulation During Infectious and Inflammatory Diseases, Front. Immunol. 10 (2020) 1-14
    V. Scaria, M. Hariharan, S. Maiti, et al., Host-virus interaction: A new role for microRNAs, Retrovirology. 3 (2006) 1-9
    Y.E. Guo, J.A. Steitz, Virus Meets Host MicroRNA: the Destroyer, the Booster, the Hijacker, Mol. Cell. Biol. 34 (2014) 3780-3787
    J.J. Gonzalez Plaza, Current roles of microRNAs in infectious diseases - Advancing into healthcare, Infektoloski Glas. 36 (2016) 5-15
    D.W. Trobaugh, C.L. Gardner, C. Sun, et al., RNA viruses can hijack vertebrate microRNAs to suppress innate immunity, Nature. 506 (2014) 245-248
    D.W. Trobaugh, W.B. Klimstra, MicroRNA Regulation of RNA Virus Replication and Pathogenesis, Trends Mol. Med. 23 (2017) 80-93
    S. Fulzele, B. Sahay, I. Yusufu, et al., COVID-19 virulence in aged patients might be impacted by the host cellular MicroRNAs abundance/profile, Aging Dis. 11 (2020) 509-522
    X. Wang, H.-K. Wang, J.P. McCoy, et al., Oncogenic HPV infection interrupts the expression of tumor-suppressive miR-34a through viral oncoprotein E6, RNA. 15 (2009) 637-647
    R.R. Wong, N. Abd-Aziz, S. Affendi, et al., Role of microRNAs in antiviral responses to dengue infection, J. Biomed. Sci. 27 (2020) 1-11
    C.H. Lecellier, P. Dunoyer, K. Arar, et al., A cellular microRNA mediates antiviral defense in human cells, Science. 308 (2005) 557-560
    T.H. Nguyen, X. Liu, Z.Z. Su, et al., Potential role of MicroRNAs in the regulation of antiviral responses to influenza infection, Front. Immunol. 9 (2018), 1541
    S. Peng, J. Wang, S. Wei, et al., Endogenous Cellular MicroRNAs Mediate Antiviral Defense against Influenza A Virus, Mol. Ther. - Nucleic Acids. 10 (2018) 361-375
    World Health Organization, Weekly epidemiological update-8 December 2020, (2020). https://www.who.int/publications/m/item/weekly-epidemiological-update-8-december-2020, 2020 (accessed 13 December 2020)
    J. Machhi, J. Herskovitz, A.M. Senan, et al., The Natural History, Pathobiology, and Clinical Manifestations of SARS-CoV-2 Infections, J. Neuroimmune Pharmacol. 15 (2020) 359-386
    K. Dhama, S. Khan, R. Tiwari, et al., Coronavirus Disease 2019-COVID-19, Clin. Microbiol. Rev. 33 (2020) 1-48
    I. Astuti, Ysrafil, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response, Diabetes Metab. Syndr. Clin. Res. Rev. 14 (2020) 407-412
    B.T. Bradley, A. Bryan, Emerging respiratory infections: The infectious disease pathology of SARS, MERS, pandemic influenza, and Legionella, Semin. Diagn. Pathol. 36 (2019) 152-159
    E. Crimi, G. Benincasa, N. Figueroa-Marrero, et al., Epigenetic susceptibility to severe respiratory viral infections: pathogenic and therapeutic implications: a narrative review, Br. J. Anaesth. (2020) 1002-1017
    F.K. Yoshimoto, The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2 or n-COV19), the Cause of COVID-19, Protein J. 39 (2020) 198-216
    S. Kannan, P.S.S. Ali, A. Sheeza, et al., COVID-19 (Novel Coronavirus 2019) - recent trends, Eur. Rev. Med. Pharmacol. Sci. 24 (2020) 2006-2011
    J. Wu, X. Yuan, B. Wang, et al., Severe Acute Respiratory Syndrome Coronavirus 2: From Gene Structure to Pathogenic Mechanisms and Potential Therapy, Front. Microbiol. 11 (2020) 1-13
    S.O. Aftab, M.Z. Ghouri, M.U. Masood, et al., Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach, J. Transl. Med. 18 (2020) 1-15
    H. Jia, P. Gong, A structure-function diversity survey of the rna-dependent rna polymerases from the positive-strand RNA viruses, Front. Microbiol. 10 (2019), 1945
    E.D. Arisan, A. Dart, G.H. Grant, et al., The Prediction of miRNAs in SARS-CoV-2 Genomes: Host Responses and Virus Pathogenicity-Related KEGG Pathways Significant for Comorbidities, Viruses. 12 (2020) 1-27
    A.L. Totura, A. Whitmore, S. Agnihothram, et al., Toll-Like Receptor 3 Signaling via TRIF Contributes to a Protective Innate Immune Response to Severe Acute Respiratory Syndrome Coronavirus Infection Allison, MBio. 6 (2015) 1-14
    M.Z. Tay, C.M. Poh, L. Renia, et al., The trinity of COVID-19: immunity, inflammation and intervention, Nat. Rev. Immunol. 20 (2020) 363-374
    J. Paces, Z. Strizova, D. Smrz,et al., COVID-19 and the immune system, Physiol. Res. 69 (2020) 379-388
    M.K. Vidya, V.G. Kumar, V. Sejian, et al., Toll-like receptors: Significance, ligands, signaling pathways, and functions in mammals, Int. Rev. Immunol. 37 (2018) 20-36
    C.J. Neufeldt, B. Cerikan, M. Cortese, et al., SARS-CoV-2 infection induces a pro-inflammatory cytokine response through cGAS-STING and NF-kB, BioRxiv. (2020) 212639 (accessed 20 December 2020)
    Y. Yang, C. Shen, J. Li, et al., Exuberant elevation of IP-10, MCP-3 and IL-1ra during SARS-CoV-2 infection is associated with disease severity and fatal outcome, MedRxiv. (2020) (accessed 16 December 2020)
    World Health Organization, What we know about the COVID-19 immune response, 2020, https://www.who.int/docs/default-source/coronaviruse/risk-comms-updates/update-34-immunity-2nd.pdf?sfvrsn=8a488cb6_2. (Accessed 29 January 2021).
    C. Liu, X. Yu, C. Gao, et al., Characterization of antibody responses to SARS-CoV-2 in convalescent COVID-19 patients, J. Med. Virol. (2020) 1-7
    V. Baruah, S. Bose, Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019-nCoV, J. Med. Virol. 92 (2020) 495-500
    A. Allegra, M. Di Gioacchino, A. Tonacci, et al., Immunopathology of SARS-CoV-2 infection: Immune cells and mediators, prognostic factors, and immune-therapeutic implications, Int. J. Mol. Sci. 21 (2020) 1-19
    Y. Xiong, Y. Liu, L. Cao, et al., Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients, Emerg. Microbes Infect. 9 (2020) 761-770
    S. Khan, R. Siddique, M.A. Shereen, et al., Emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2: Biology and therapeutic options, J. Clin. Microbiol. 58 (2020) 1-10
    J.S. Bhatti, G.K. Bhatti, N. Khullar, et al., Therapeutic Strategies in the Development of Anti-viral Drugs and Vaccines Against SARS-CoV-2 Infection, Mol. Neurobiol. 57 (2020) 4856-4877
    R. Bartoszewski, M. Dabrowski, B. Jakiela, et al., SARS-CoV-2 may regulate cellular responses through depletion of specific host miRNAs, Am. J. Physiol. - Lung Cell. Mol. Physiol. 319 (2020) L444-L455
    P.K. Mishra, R. Tandon, S.N. Byrareddy, Diabetes and COVID-19 risk: an miRNA perspective, Am. J. Physiol. - Hear. Circ. Physiol. 319 (2020) H604-H609
    R. Zhou, T. Rana, RNA-based mechanisms regulating host-virus interactions, Immunol. Reveiw. 253 (2013) 97-111
    T. Huan, G. Chen, C. Liu, et al., Age-associated microRNA expression in human peripheral blood is associated with all-cause mortality and age-related traits, Aging Cell. 17 (2018) 1-10
    R. Gambari, E. Brognara, D.A. Spandidos, et al., Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: Ew trends in the development of miRNA therapeutic strategies in oncology (Review), Int. J. Oncol. 49 (2016) 5-32
    W. Ji, B. Sun, C. Su, Targeting microRNAs in cancer gene therapy, Genes (Basel). 8 (2017) 1-15
    Z. Wicik, C. Eyileten, D. Jakubik, et al., ACE2 interaction networks in COVID-19: a physiological framework for prediction of outcome in patients with cardiovascular risk factors, BioRxiv. (2020) 1-14 (accessed 16 December 2020)
    D. Lu, S. Chatterjee, K. Xiao, et al., MicroRNAs targeting the SARS-CoV-2 entry receptor ACE2 in cardiomyocytes., J. Mol. Cell. Cardiol. 148 (2020) 46-49
    W. Ni, X. Yang, D. Yang, et al., Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19, Crit. Care. 24 (2020) 1-10
    Z.L. Qin, P. Zhao, X.L. Zhang, et al., Silencing of SARS-CoV spike gene by small interfering RNA in HEK 293T cells, Biochem. Biophys. Res. Commun. 324 (2004) 1186-1193
    Y. Zhang, T. Li, L. Fu, et al., Silencing SARS-CoV Spike protein expression in cultured cells by RNA interference, FEBS Lett. 560 (2004) 141-146
    Q. Liu, J. Du, X. Yu, et al., MiRNA-200c-3p is crucial in acute respiratory distress syndrome, Cell Discov. 3 (2017) 1-17
    B. Mallick, Z. Ghosh, J. Chakrabarti, MicroRNome analysis unravels the molecular basis of SARS infection in bronchoalveolar stem cells, PLoS One. 4 (2009), e7837
    P. Wang, J. Hou, L. Lin, et al., Inducible microRNA-155 Feedback Promotes Type I IFN Signaling in Antiviral Innate Immunity by Targeting Suppressor of Cytokine Signaling 1, J. Immunol. 185 (2010) 6226-6233
    F. Huang, J. Zhang, D. Yang, et al., MicroRNA expression profile of whole blood is altered in adenovirus-infected pneumonia children, Mediators Inflamm. 2018 (2018), 2320640
    J. Makkoch, W. Poomipak, S. Saengchoowong, et al., Human microRNAs profiling in response to influenza A viruses (subtypes pH1N1, H3N2, and H5N1), Exp. Biol. Med. 241 (2016) 409-420
    S. Nersisyan, M. Shkurnikov, A. Turchinovich, et al., Integrative analysis of miRNA and mRNA sequencing data reveals potential regulatory mechanisms of ACE2 and TMPRSS2, PLoS One. 15 (2020) 1-12
    A. Sacconi, S. Donzelli, C. Pulito, et al., TMPRSS2, a SARS-CoV-2 internalization protease is downregulated in head and neck cancer patients, J. Exp. Clin. Cancer Res. 39 (2020) 1-15
    M.L. He, B. Zheng, Y. Peng, J, et al., Inhibition of SARS-Associated Coronavirus Infection and Replication by RNA Interference, J. Am. Med. Assoc. 290 (2003) 2665-2666
    T.R. Tong, Therapies for coronaviruses. Part 2: inhibitors of intracellular life cycle, Expert Opin. Ther. Pat. 19 (2009) 415-431
    J.T.-S. Chow, L. Salmena, Prediction and Analysis of SARS-CoV-2-Targeting microRNA in Human Lung Epithelium, Genes (Basel). 11 (2020) 1-12
    M.D. Sacar Demirci, A. Adan, Computational analysis of microRNA-mediated interactions in SARS-CoV-2 infection, PeerJ. 8 (2020), e9369
    M.G. Barbu, C.E. Condrat, D.C. Thompson, et al., MicroRNA Involvement in Signaling Pathways During Viral Infection, Front. Cell Dev. Biol. 8 (2020) 1-22
    M.A.A.K. Khan, M.R.U. Sany, M.S. Islam, et al., Epigenetic Regulator miRNA Pattern Differences Among SARS-CoV, SARS-CoV-2, and SARS-CoV-2 World-Wide Isolates Delineated the Mystery Behind the Epic Pathogenicity and Distinct Clinical Characteristics of Pandemic COVID-19, Front. Genet. 11 (2020) 1-17
    S.A. Leon-Icaza, M. Zeng, A.G. Rosas-Taraco, microRNAs in viral acute respiratory infections: immune regulation, biomarkers, therapy, and vaccines, ExRNA. 1 (2019) 1-7
    M.J. de Veer, M. Holko, Frevel. M, et al., Functional classification of interferon-stimulated genes identified using microarrays, J. Leukoc. Biol. 69 (2001) 912-920
    C.H. Yang, K. Li, S.R. Pfeffer, et al., The type I IFN-Induced miRNA, miR-21, Pharmaceuticals. 8 (2015) 836-847
    Y. Li, E.Y. Chan, J. Li, et al., MicroRNA Expression and Virulence in Pandemic Influenza Virus-Infected Mice, J. Virol. 84 (2010) 3023-3032
    A.Y. Wen, K.M. Sakamoto, L.S. Miller, The Role of the Transcription Factor CREB in Immune Function, J. Immunol. 185 (2017) 6413-6419
    F.W. Lai, K.B. Stephenson, J. Mahony, et al., Human Coronavirus OC43 Nucleocapsid Protein Binds MicroRNA 9 and Potentiates NF- B Activation, J. Virol. 88 (2014) 54-65
    A. Globinska, M. Pawelczyk, M.L. Kowalski, MicroRNAs and the immune response to respiratory virus infections, Expert Rev. Clin. Immunol. 10 (2014) 963-971
    D.T. Gracias, E. Stelekati, J.L. Hope, et al., MicroRNA-155 controls CD8+ T cell responses by regulating interferon signaling, Nat. Immunol. 14 (2013) 593-602
    V. Chaudhary, S. Jangra, N.R. Yadav, Nanotechnology based approaches for detection and delivery of microRNA in healthcare and crop protection, J. Nanobiotechnology. 16 (2018), 40
    A. Wicki, D. Witzigmann, V. Balasubramanian, et al., Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications, J. Control. Release. 200 (2015) 138-157
    B. Bahrami, M. Hojjat-Farsangi, H. Mohammadi, et al., Nanoparticles and targeted drug delivery in cancer therapy, Immunol. Lett. 190 (2017) 64-83
    B. Fluhmann, I. Ntai, G. Borchard, et al., Nanomedicines: the magic bullets reaching their target?, Eur. J. Pharm. Sci. 128 (2019) 73-80
    X. Xu, W. Ho, X. Zhang, et al., Cancer nanomedicine: From targeted delivery to combination therapy, Trends Mol. Med. 21 (2015) 223-232
    B. Santos-Carballal, L.J. Aaldering, M. Ritzefeld, et al., Physicochemical and biological characterization of chitosan- microRNA nanocomplexes for gene delivery to MCF-7 breast cancer cells, Sci. Rep. 13567 (2015), 13567
    Z. Bai, J. Wei, C. Yu, et al., Non-viral nanocarriers for intracellular delivery of microRNA therapeutics, J. Mater. Chem. B. 7 (2019) 1209-1225
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (183) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return