Volume 12 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Anqi Huang, Wenwen Deng, Xiao Li, Qutong Zheng, Xuanxuan Wang, Yuxiu Xiao. Long-chain alkanol–alkyl carboxylic acid-based low-viscosity hydrophobic deep eutectic solvents for one-pot extraction of anthraquinones from Rhei Radix et Rhizoma[J]. Journal of Pharmaceutical Analysis, 2022, 12(1): 87-95. doi: 10.1016/j.jpha.2021.03.002
Citation: Anqi Huang, Wenwen Deng, Xiao Li, Qutong Zheng, Xuanxuan Wang, Yuxiu Xiao. Long-chain alkanol–alkyl carboxylic acid-based low-viscosity hydrophobic deep eutectic solvents for one-pot extraction of anthraquinones from Rhei Radix et Rhizoma[J]. Journal of Pharmaceutical Analysis, 2022, 12(1): 87-95. doi: 10.1016/j.jpha.2021.03.002

Long-chain alkanol–alkyl carboxylic acid-based low-viscosity hydrophobic deep eutectic solvents for one-pot extraction of anthraquinones from Rhei Radix et Rhizoma

doi: 10.1016/j.jpha.2021.03.002
Funds:

We thank the National Natural Science Foundation of China (Grant Nos.: 81673394 and 82073811), the Fundamental Research Funds for the Central Universities (Grant No.: 2042020kf1010), and the Large-scale Instrument and Equipment Sharing Foundation of Wuhan University (Grant No.: LF20170838).

  • Received Date: Sep. 03, 2020
  • Accepted Date: Mar. 08, 2021
  • Rev Recd Date: Jan. 01, 2021
  • Publish Date: Mar. 17, 2021
  • Natural long-chain alkanol and alkyl carboxylic acid were used to prepare novel hydrophobic deep eutectic solvents (HDESs). These HDESs are liquid at room temperature and have low viscosity (<12.26 mPa‧s), low polarity (lower than that of methanol, ChCl-based deep eutectic solvents and other reported HDESs), and low density (<0.928 g/mL). A simple one-pot method based on a novel HDES–water two-phase extraction system was constructed for the extraction of weak-polarity bioactive components, anthraquinones, from Rhei Radix et Rhizoma. This HDES-based new extraction method does not consume hazardous organic solvents and can obtain a total anthraquinone yield of 21.52 mg/g, which is close to that obtained by the Chinese pharmacopoeia method (21.22 mg/g) and considerably higher than those by other reported HDESs-based extraction methods (14.20–20.09 mg/g, p < 0.01). The high extraction yield can be mainly attributed to the severe destruction of the RRR cell walls by the extraction system and the excellent dissolving ability of novel HDESs for anthraquinones.
  • loading
  • M.H. Zainal-Abidin, M. Hayyan, A. Hayyan, et al., New horizons in the extraction of bioactive compounds using deep eutectic solvents:A review, Anal. Chim. Acta 979(2017)1-23
    D. Zhang, K. Wu, X. Zhang, et al., In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus, J. Integr. Med. 18(2020)152-158
    S.K. Sinha, A. Shakya, S.K. Prasad, et al., An in-silico evaluation of different Saikosaponins for their potency against SARS-CoV-2 using NSP15 and fusion spike glycoprotein as targets, J. Biomol. Struct. Dyn.(2020)1-13
    J. Morone, A. Alfeus, V. Vasconcelos, et al., Revealing the potential of cyanobacteria in cosmetics and cosmeceuticals-A new bioactive approach, Algal Res. 41(2019)101541
    S. Maqsood, O. Adiamo, M. Ahmad, et al., Bioactive compounds from date fruit and seed as potential nutraceutical and functional food ingredients, Food Chem. 308(2020)125522
    W. Kukula-Koch, W. Koch, N. Stasiak, et al., Quantitative standarization and CPC-based recovery of pharmacologically active components from Polygonum tinctorium Ait. leaf extracts, Ind. Crop. Prod. 69(2015)324-328
    J. Kubola, N. Meeso, S. Siriamornpun, Lycopene and beta carotene concentration in aril oil of gac (Momordica cochinchinensis Spreng) as influenced by aril-drying process and solvents extraction, Food. Res. Int. 50(2013)664-669
    M. Wojciak-Kosior, I. Sowa, R. Kocjan, et al., Effect of different extraction techniques on quantification of oleanolic and ursolic acid in Lamii albi flos, Ind. Crop. Prod. 44(2013)373-377
    R. Goyeneche, K. Di Scala, C.L. Ramirez, et al., Recovery of bioactive compounds from beetroot leaves by supercritical CO2 extraction as a promising bioresource, J. Supercrit. Fluid. 155(2020)104658
    M. Rouhani, Modeling and optimization of ultrasound-assisted green extraction and rapid HPTLC analysis of stevioside from Stevia Rebaudiana, Ind. Crop. Prod. 132(2019)226-235
    K. Hou, M. Bao, L. Wang, et al., Aqueous enzymatic pretreatment ionic liquid-lithium salt based microwave-assisted extraction of essential oil and procyanidins from pinecones of Pinus koraiensis, J. Clean. Prod. 236(2019)117581
    T. Tsiaka, C. Fotakis, D. Z. Lantzouraki, et al., Expanding the Role of Sub-Exploited DOE-High Energy Extraction and Metabolomic Profiling towards Agro-Byproduct Valorization:The Case of Carotenoid-Rich Apricot Pulp, Molecules 25(2020)2702
    M. Agnieszka, S. Michal, K. Robert, Selection of Conditions of Ultrasound-Assisted, Three-Step Extraction of Ellagitannins from Selected Berry Fruit of the Rosaceae Family Using the Response Surface Methodology, Food Anal. Method. 13(2020)1650-1665
    M.W. Nam, J. Zhao, M.S. Lee, et al., Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents:application to flavonoid extraction from Flos sophorae, Green Chem. 17(2015)1718-1727
    D.E. Yoo, K.M. Jeong, S.Y. Han, et al., Deep eutectic solvent-based valorization of spent coffee grounds, Food Chem. 255(2018)357-364
    J. Liang, Y. Zeng, H. Wang, et al., Extraction, purification and antioxidant activity of novel polysaccharides from Dendrobium officinale by deep eutectic solvents, Nat. Prod. Res. 33(2019)3248-3253
    L. Benvenutti, A. A. F. Zielinski, S. R. S. Ferreira, Which is the best food emerging solvent:IL, DES or NADES?Trends Food Sci. Tech. 90(2019)133-146
    M. Ruesgas-Ramon, M. C.Figueroa-Espinoza, E. Durand, Application of Deep Eutectic Solvents (DES) for Phenolic Compounds Extraction:Overview, Challenges, and Opportunities, J. Agric. Food Chem. 65(2017)3591-3601
    Y. Dai, J. van Spronsen, G.J. Witkamp, et al., Natural deep eutectic solvents as new potential media for green technology, Anal. Chim. Acta. 766(2013)61-68
    L.T. Wang, Q. Yang, Q. Cui, et al., Recyclable menthol-based deep eutectic solvent micellar system for extracting phytochemicals from Ginkgo biloba leaves, J. Clean. Prod. 244(2020)118648
    Q. Zhang, K. De Oliveira Vigier, S. Royer, et al., Deep eutectic solvents:syntheses, properties and applications, Chem. Soc. Rev. 41(2012)7108-7146
    Y. Dai, G.J. Witkamp, R. Verpoorte, et al., Tailoring properties of natural deep eutectic solvents with water to facilitate their applications, Food Chem. 187(2015)14-19
    B.D. Ribeiro, C. Florindo, L.C. Iff, et al., Menthol-based Eutectic Mixtures:Hydrophobic Low Viscosity Solvents, ACS Sustain. Chem. Eng. 3(2015)2469-2477
    C. Florindo, L.C. Branco, I.M. Marrucho, Quest for Green-Solvent Design:From Hydrophilic to Hydrophobic (Deep) Eutectic Solvents, ChemSusChem 12(2019)1549-1559
    D.J.G.P. van Osch, L.F. Zubeir, A. van den Bruinhorst, et al., Hydrophobic deep eutectic solvents as water-immiscible extractants, Green Chem. 17(2015)4518-4521
    T. Krizek, M. Bursova, R. Horsley, et al., Menthol-based hydrophobic deep eutectic solvents:Towards greener and efficient extraction of phytocannabinoids, J. Clean. Prod. 193(2018)391-396
    Y.P.A. Silva, T. Ferreira, G. Jiao, et al., Sustainable approach for lycopene extraction from tomato processing by-product using hydrophobic eutectic solvents, J. Food Sci. Technol. 56(2019)1649-1654
    J. Cao, L. Chen, M. Li, et al., Two-phase systems developed with hydrophilic and hydrophobic deep eutectic solvents for simultaneously extracting various bioactive compounds with different polarities, Green Chem. 20(2018)1879-1886
    J. Cao, M. Yang, F. Cao, et al., Well-Designed Hydrophobic Deep Eutectic Solvents As Green and Efficient Media for the Extraction of Artemisinin from Artemisia annua Leaves, ACS Sustain. Chem. Eng. 5(2017)3270-3278
    J. Cao, M. Yang, F. Cao, et al., Tailor-made hydrophobic deep eutectic solvents for cleaner extraction of polyprenyl acetates from Ginkgo biloba leaves, J. Clean. Prod. 152(2017)399-405
    C. Florindo, F. Lima, L.C. Branco, et al., Hydrophobic Deep Eutectic Solvents:A Circular Approach to Purify Water Contaminated with Ciprofloxacin, ACS Sustain. Chem. Eng. 7(2019)14739-14746
    A.U. Arvindekar, K.S. Laddha, An efficient microwave-assisted extraction of anthraquinones from Rheum emodi:Optimisation using RSM, UV and HPLC analysis and antioxidant studies, Ind. Crop. Prod. 83(2016)587-595
    Chinese Pharmacopoeia Commission, Pharmacopoeia of the People's Republic of China, China Medical Science Press, Beijing, China, 2020
    L. Duan, L.L. Dou, L. Guo, et al., Comprehensive Evaluation of Deep Eutectic Solvents in Extraction of Bioactive Natural Products, ACS Sustain. Chem. Eng. 4(2016)2405-2411
    W.W. Deng, Y. Zong, Y.X. Xiao, Hexafluoroisopropanol-Based Deep Eutectic Solvent/Salt Aqueous Two-Phase Systems for Extraction of Anthraquinones from Rhei Radix et Rhizoma Samples, ACS Sustain. Chem. Eng. 5(2017)4267-4275
    Noweck K., Grafahrend W., Fatty alcohols, in:Ullmann's Encyclopedia of Industrial Chemistry, John Wiley& Sons, Inc., 2006
    C. Florindo, L. Romero, I. Rintoul, et al., From Phase Change Materials to Green Solvents:Hydrophobic Low Viscous Fatty Acid-Based Deep Eutectic Solvents, ACS Sustain. Chem. Eng. 6(2018)3888-3895
    M. Gilmore, E.N. McCourt, F. Connolly, et al., Hydrophobic Deep Eutectic Solvents Incorporating Trioctylphosphine Oxide:Advanced Liquid Extractants, ACS Sustain. Chem. Eng. 6(2018)17323-17332
    A. Pandey, R. Rai, M. Pal, et al., How polar are choline chloride-based deep eutectic solvents?Phys. Chem. Chem. Phys. 16(2014)1559-1568
    X.Q. Fu, N. Ma, W.P. Sun, et al., Microwave and enzyme co-assisted aqueous two-phase extraction of polyphenol and lutein from marigold (Tagetes erecta L.) flower, Ind. Crop. Prod. 123(2018)296-302
    M.A.R. Martins, E.A. Crespo, P.V.A. Pontes, et al., Tunable Hydrophobic Eutectic Solvents Based on Terpenes and Monocarboxylic Acids, ACS Sustain. Chem. Eng. 6(2018)8836-8846
    C. Florindo, L.G. Celia-Silva, L.F.G. Martins, et al., Supramolecular hydrogel based on a sodium deep eutectic solvent, Chem. Commun. 54(2018)7527-7530
    B.Y. Zhao, P. Xu, F.X. Yang, et al., Biocompatible Deep Eutectic Solvents Based on Choline Chloride:Characterization and Application to the Extraction of Rutin from Sophora japonica, ACS Sustain. Chem. Eng. 3(2015)2746-2755
    C. Florindo, F.S. Oliveira, L.P.N. Rebelo, et al., Insights into the Synthesis and Properties of Deep Eutectic Solvents Based on Cholinium Chloride and Carboxylic Acids, ACS Sustain. Chem. Eng. 2(2014)2416-2425
    W.M.A. Wan Mahmood, A. Lorwirachsutee, C. Theodoropoulos, M. Gonzalez-Miquel, Polyol-Based Deep Eutectic Solvents for Extraction of Natural Polyphenolic Antioxidants from Chlorella vulgaris, ACS Sustain. Chem. Eng. 7(2019)5018-5026
    M.Puri, D.Sharma, C.J. Barrow, Enzyme-assisted extraction of bioactives from plants, Trends Biotechnol. 30(2012)37-44
    W. Jin, Q. Yang, B. Huang, et al., Enhanced solubilization and extraction of hydrophobic bioactive compounds using water/ionic liquid mixtures, Green Chem. 18(2016)3549-3557
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (231) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return