Citation: | Surajit Mistry, Subhasish Burman, Subhasis Roy, Nilendu Jyoti Maitra, Rajiv Roy, Abhijit Chanda. Biological analysis of an innovative biodegradable antibiotic eluting bioactive glass/gypsum composite bone cement for treating experimental chronic MRSA osteomyelitis[J]. Journal of Pharmaceutical Analysis, 2022, 12(1): 164-177. doi: 10.1016/j.jpha.2021.02.005 |
Z. Xie, X. Liu, W. Jia, et al., Treatment of osteomyelitis and repair of bone defect by degradable bioactive borate glass releasing vancomycin, J. Control. Release 139(2009)118-126
|
T.A.G. van Vugt, J.J. Arts, J.A.P. Geurts., Antibiotic-loaded polymethylmethacrylate beads and spacers in treatment of orthopedic infections and the role of biofilm formation, Front Microbiol. 10(2019), 1626
|
W.J. Habraken, J.G. Wolke, J.A. Jansen, Ceramics composites as and scaffolds for drug delivery in tissue engineering, Adv. Drug Deliv. Rev. 59(2007)234-248
|
P. Hsu, H. Kuo, W. Tuan, et al., Manipulation of the degradation behavior of calcium sulfate by the addition of bioglass, Prog. Biomater. 8(2019)115-125
|
Q.Z. Chen, I.D. Thompson, A.R. Boccaccini, 45S5 Bioglass-derived glass ceramic scaffolds for bone tissue engineering, Biomaterials 27(2006)2414-2425
|
X. Zhang, W. Jia, Y. Gu, et al., Teicoplanin-loaded borate bioactive glass implants for treating chronic bone infection in a rabbit tibia osteomyelitis model, Biomaterials 31(2010)5865-5874
|
Y. Zheng, C. Xiong, D. Zhang, et al., In vitro bioactivity evaluation of α-calcium sulphate hemihydrate and bioactive glass composites for their potential use in bone regeneration, Bull. Mater. Sci. 41(2018), 59
|
B.D. Ulery, L.S. Nair, C.T. Laurencin, Biomedical applications of biodegradable polymers, J. Polym. Sci. B Polym. Phys. 49(2011)832-864
|
L. Zhao, C. Wu, K. Lin, et al., The effect of poly (lactic-co-glycolic acid)(PLGA) coating on the mechanical, biodegradable, bioactive properties and drug release of porous calcium silicate scaffolds, Biomed. Mater. Eng. 22(2012)289-300
|
G. Giavaresi, E. Bertazzoni Minelli, M. Sartori, et al., Microbiological and pharmacological tests on new antibiotic-loaded PMMA-based composites for the treatment of osteomyelitis, J. Orthop. Res. 30(2012)348-355
|
J. Slane, B. Gietman, M. Squire, Antibiotic elution from acrylic bone cement loaded with high doses of tobramycin and vancomycin, J. Orthop. Res. 36(2018)1078-1085
|
R.P. Howlin, M.J. Brayford, J.S. Webb, et al., Antibiotic-loaded synthetic calcium sulfate beads for prevention of bacterial colonization and biofilm formation in periprosthetic infections, Antimicrob. Agents Chemother. 59(2015)111-120
|
H. Ding, C.J. Zhao, X. Cui, et al., A novel injectable borate bioactive glass cement as an antibiotic delivery vehicle for treating osteomyelitis, PLoS ONE. 9(2014), e85472
|
S.K. Ghosh, S.K. Nandi, B. Kundu, et al., In vivo response of porous hydroxyapatite and beta-tricalcium phosphate prepared by aqueous solution combustion method and comparison with bioglass scaffolds, J. Biomed. Mater. Res. 86(2008)217-227
|
W. Zhou, Y. Xue, X. Ji, et al., A novel injectable and degradable calcium phosphate/calcium sulfate bone cement, Afr. J. Biotechnol. 10(2011)19449-19457
|
G.O.K. Loh, K.B. Liew, K.K. Peh, et al., Simple high performance liquid chromatography method for determination of norfloxacin in plasma and application in bioequivalence study, Int. J. Pharm. Pharm. Sci. 4(2012)247-251
|
M. Balouiri, M. Sadiki, S.K. Ibnsouda, Methods for in vitro evaluating antimicrobial activity:A review, J. Pharm. Anal. 6(2016)71-79
|
C. Soundrapandian, D. Basu, B. Sa, et,al., Local drug delivery system for the treatment of osteomyelitis:In vitro evaluation, Drug Dev. Ind. Pharm. 37(2010)538-546
|
L. Fu, W. Xia, T. Mellgren, et al., Preparation of High Percentage α-Calcium Sulfate Hemihydrate via a Hydrothermal Method, J. Biomater. Nanobiotechnol. 8(2017)36-49
|
V. Leskeviciene, α-Hemihydrate gypsum from flue gas desulphurization gypsum, Mater. Sci-Medzg. 19(2013)197-202
|
X.Q.Wu, Z.B.Wu, Modification of FGD gypsum in hydrothermal mixed salt solution, J. Environ. Sci.(China)18(2006)170-175
|
L.L. Hench, Bioceramics:from concept to clinic, J. Am. Ceram. Soc. 74(1991)1487-1510
|
S. Zahid, A.T. Shah, A. Jamal, et al., Biological behavior of bioactive glasses and their composites, RSC Adv. 6(2016)70197-70214
|
D. Bellucci, A. Sola, V. Cannillo, et al., Low temperature sintering of innovative bioactive glasses. J. Am. Ceram. Soc. 95(2012)1313-1319
|
Y. Zhu, S. Kaskel, Comparison of the in vitro bioactivity and drug release property of mesoporous bioactive glasses (MBGs) and bioactive glasses (BGs) scaffolds. Micropor. Mesopor. Mat. 118(2009)176-182
|
S.V. Dorozhkin, Self-setting calcium orthophosphate formulations, J. Funct. Biomater. 4(2013)209-311
|
L-C. Gerhardt; A.R. Boccaccini, Bioactive glass and glass-ceramic scaffolds for bone tissue engineering, Materials, 3(2010)3867-3910
|
A-M. Yousefi, A review of calcium phosphate cements and acrylic bone cements as injectable materials for bone repair and implant fixation, J. Appl. Biomater. Funct. Mater. 17(2019), https://doi.org/10.1177/2280800019872594
|
M. Zilbermann, J.J. Elsner, Antibiotic-eluting medical devices for various applications, J. Control. Release, 130(2008)202-215
|
L. Du, S. Yang, W. Li, et al., Scaffold composed of porous vancomycin-loaded poly (lactide-co-glycolide) microspheres:A controlled-release drug delivery system with shape-memory effect, Mater. Sci. Eng. C. 78(2017)1172-1178
|
Y.F. Zhao, S.C. Loo, Y.Z. Chen, et al., In situ SAXRD study of sol-gel induced well-ordered mesoporous bioglasses for drug delivery, J. Biomed. Mater. Res. A. 85(2008)1032-1042
|
A.R. Boccaccini, V. Maquet, Bioresorbable and bioactive polymer/bioglass® composites with tailored pore structure for tissue engineering applications, Compos. Sci. Technol. 63(2003)2417-2429
|
H.W. Kim, E.J. Lee, I.K. Jun, et al., Degradation and drug release of phosphate glass/polycaprolactone biological composites for hard-tissue regeneration. J. Biomed. Mater. Res. B Appl. Biomater. 75(2005)34-41
|
V. Antoci Jr, C.S. Adams, N.J. Hickok, et al., Antibiotics for local delivery systems cause skeletal cell toxicity in vitro, Clin. Orthop. Relat. Res. 462(2007)200-206
|
L. Drago, M. Toscano, M. Bottagisio, Recent evidence on bioactive glass antimicrobial and antibiofilm activity:A mini-review, Materials (Basel). 11(2018), 326
|
C. Gauland, Managing lower-extremity osteomyelitis locally with surgical debridement and synthetic calcium sulfate antibiotic tablets, Adv. Skin Wound Care, 24(2011)515-523
|
U. Gbureck, E. Vorndran, J.E. Barralet, Modeling vancomycin release kinetics from microporous calcium phosphate ceramics comparing static and dynamic immersion conditions, Acta. Biomater. 4(2008)1480-1486
|
Y.Fu, W.J. Kao. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems, Expert Opin. Drug Deliv. 7(2010)429-444
|
T.R. Arnett, Extracellular pH regulates bone cell function, J. Nutr.138(2008)415S-418S
|
Y.H. Shen, W.C. Liu, K.L. Lin, et al., Interfacial pH:a critical factor for osteoporotic bone regeneration, Langmuir, 27(2011)2701-2708
|
Z. Huan, J. Chang, Self-setting properties and in vitro bioactivity of calcium sulfate hemihydrate-tricalcium silicate composite bone cements, Acta Biomater., 3(2007)952-960
|
M. Panteli, P.V. Giannoudis, Chronic osteomyelitis:what the surgeon needs to know, Effort Open Rev., 1(2017)128-135
|
R. Saikia, A.K. Goswami, H.K. Sharma, Drug delivery to brain and bone marrow:A review, Eur. J. Biomed. Pharma. Sci., 3(2016)604-616
|
T. Zhu, Y. Cui, M. Zhang, et al., Engineered three-dimensional scaffolds for enhanced bone regeneration in osteonecrosis, Bioact. Mater. 5(2020)584-601
|
L. Cui, J. Zhang, J. Zou et al., Electroactive composite scaffold with locally expressed osteoinductive factor for synergistic bone repair upon electrical stimulation, Biomaterials. 230(2020), 119617
|
X. Feng, J. Li, X. Zhang, et al., Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare, J. Control. Release 302(2019)19-41
|
S. Li, S. Dong, W. Xu, et al., Antibacterial hydrogels. Adv. Sci (Weinh). 5(2018), 1700527
|