Volume 12 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Surajit Mistry, Subhasish Burman, Subhasis Roy, Nilendu Jyoti Maitra, Rajiv Roy, Abhijit Chanda. Biological analysis of an innovative biodegradable antibiotic eluting bioactive glass/gypsum composite bone cement for treating experimental chronic MRSA osteomyelitis[J]. Journal of Pharmaceutical Analysis, 2022, 12(1): 164-177. doi: 10.1016/j.jpha.2021.02.005
Citation: Surajit Mistry, Subhasish Burman, Subhasis Roy, Nilendu Jyoti Maitra, Rajiv Roy, Abhijit Chanda. Biological analysis of an innovative biodegradable antibiotic eluting bioactive glass/gypsum composite bone cement for treating experimental chronic MRSA osteomyelitis[J]. Journal of Pharmaceutical Analysis, 2022, 12(1): 164-177. doi: 10.1016/j.jpha.2021.02.005

Biological analysis of an innovative biodegradable antibiotic eluting bioactive glass/gypsum composite bone cement for treating experimental chronic MRSA osteomyelitis

doi: 10.1016/j.jpha.2021.02.005
  • Received Date: Jun. 29, 2020
  • Accepted Date: Feb. 25, 2021
  • Rev Recd Date: Feb. 18, 2021
  • Publish Date: Mar. 03, 2021
  • A multi-barrier antibiotics loaded biodegradable composite bone cement for resolving chronic osteomyelitis has been studied to understand the physico-mechanical properties, drug loading/eluting efficiency, and different merits and demerits prior to clinical application. After successful induction of bone infection in 28 rabbits using methicillin-resistant Staphylococcus aureus (MRSA) strains, calcium sulfate/bioactive glass based composite cement was implanted in 12 defects to assess its performance over parenteral therapy with microscopic and radiological examination for 90 days. The composite cement revealed acceptable physico-mechanical properties and controlled drug elution kinetics. Furthermore, the antibiotics concentrations in bone up to 42 days were sufficient to kill MRSA without eliciting adverse drug reactions. The striking feature of platelets aggregation by composite cement could assist bone healing. The controlled degradation with simultaneous entrapment of composite cement within the osteoid tissues and complete repair of infected cortical defects (holes) in rabbit tibia at 6 weeks indicated the excellent anti-infective and osteoconductive properties of composite cement. Thus, the animal study demonstrated the superiority of composite over injectable antibiotic therapy based on infection resolution and bone regeneration. We thereby conclude that the composite cement can be effectively applied in the treatment of resistant cases of chronic osteomyelitis.
  • loading
  • Z. Xie, X. Liu, W. Jia, et al., Treatment of osteomyelitis and repair of bone defect by degradable bioactive borate glass releasing vancomycin, J. Control. Release 139(2009)118-126
    T.A.G. van Vugt, J.J. Arts, J.A.P. Geurts., Antibiotic-loaded polymethylmethacrylate beads and spacers in treatment of orthopedic infections and the role of biofilm formation, Front Microbiol. 10(2019), 1626
    W.J. Habraken, J.G. Wolke, J.A. Jansen, Ceramics composites as and scaffolds for drug delivery in tissue engineering, Adv. Drug Deliv. Rev. 59(2007)234-248
    P. Hsu, H. Kuo, W. Tuan, et al., Manipulation of the degradation behavior of calcium sulfate by the addition of bioglass, Prog. Biomater. 8(2019)115-125
    Q.Z. Chen, I.D. Thompson, A.R. Boccaccini, 45S5 Bioglass-derived glass ceramic scaffolds for bone tissue engineering, Biomaterials 27(2006)2414-2425
    X. Zhang, W. Jia, Y. Gu, et al., Teicoplanin-loaded borate bioactive glass implants for treating chronic bone infection in a rabbit tibia osteomyelitis model, Biomaterials 31(2010)5865-5874
    Y. Zheng, C. Xiong, D. Zhang, et al., In vitro bioactivity evaluation of α-calcium sulphate hemihydrate and bioactive glass composites for their potential use in bone regeneration, Bull. Mater. Sci. 41(2018), 59
    B.D. Ulery, L.S. Nair, C.T. Laurencin, Biomedical applications of biodegradable polymers, J. Polym. Sci. B Polym. Phys. 49(2011)832-864
    L. Zhao, C. Wu, K. Lin, et al., The effect of poly (lactic-co-glycolic acid)(PLGA) coating on the mechanical, biodegradable, bioactive properties and drug release of porous calcium silicate scaffolds, Biomed. Mater. Eng. 22(2012)289-300
    G. Giavaresi, E. Bertazzoni Minelli, M. Sartori, et al., Microbiological and pharmacological tests on new antibiotic-loaded PMMA-based composites for the treatment of osteomyelitis, J. Orthop. Res. 30(2012)348-355
    J. Slane, B. Gietman, M. Squire, Antibiotic elution from acrylic bone cement loaded with high doses of tobramycin and vancomycin, J. Orthop. Res. 36(2018)1078-1085
    R.P. Howlin, M.J. Brayford, J.S. Webb, et al., Antibiotic-loaded synthetic calcium sulfate beads for prevention of bacterial colonization and biofilm formation in periprosthetic infections, Antimicrob. Agents Chemother. 59(2015)111-120
    H. Ding, C.J. Zhao, X. Cui, et al., A novel injectable borate bioactive glass cement as an antibiotic delivery vehicle for treating osteomyelitis, PLoS ONE. 9(2014), e85472
    S.K. Ghosh, S.K. Nandi, B. Kundu, et al., In vivo response of porous hydroxyapatite and beta-tricalcium phosphate prepared by aqueous solution combustion method and comparison with bioglass scaffolds, J. Biomed. Mater. Res. 86(2008)217-227
    W. Zhou, Y. Xue, X. Ji, et al., A novel injectable and degradable calcium phosphate/calcium sulfate bone cement, Afr. J. Biotechnol. 10(2011)19449-19457
    G.O.K. Loh, K.B. Liew, K.K. Peh, et al., Simple high performance liquid chromatography method for determination of norfloxacin in plasma and application in bioequivalence study, Int. J. Pharm. Pharm. Sci. 4(2012)247-251
    M. Balouiri, M. Sadiki, S.K. Ibnsouda, Methods for in vitro evaluating antimicrobial activity:A review, J. Pharm. Anal. 6(2016)71-79
    C. Soundrapandian, D. Basu, B. Sa, et,al., Local drug delivery system for the treatment of osteomyelitis:In vitro evaluation, Drug Dev. Ind. Pharm. 37(2010)538-546
    L. Fu, W. Xia, T. Mellgren, et al., Preparation of High Percentage α-Calcium Sulfate Hemihydrate via a Hydrothermal Method, J. Biomater. Nanobiotechnol. 8(2017)36-49
    V. Leskeviciene, α-Hemihydrate gypsum from flue gas desulphurization gypsum, Mater. Sci-Medzg. 19(2013)197-202
    X.Q.Wu, Z.B.Wu, Modification of FGD gypsum in hydrothermal mixed salt solution, J. Environ. Sci.(China)18(2006)170-175
    L.L. Hench, Bioceramics:from concept to clinic, J. Am. Ceram. Soc. 74(1991)1487-1510
    S. Zahid, A.T. Shah, A. Jamal, et al., Biological behavior of bioactive glasses and their composites, RSC Adv. 6(2016)70197-70214
    D. Bellucci, A. Sola, V. Cannillo, et al., Low temperature sintering of innovative bioactive glasses. J. Am. Ceram. Soc. 95(2012)1313-1319
    Y. Zhu, S. Kaskel, Comparison of the in vitro bioactivity and drug release property of mesoporous bioactive glasses (MBGs) and bioactive glasses (BGs) scaffolds. Micropor. Mesopor. Mat. 118(2009)176-182
    S.V. Dorozhkin, Self-setting calcium orthophosphate formulations, J. Funct. Biomater. 4(2013)209-311
    L-C. Gerhardt; A.R. Boccaccini, Bioactive glass and glass-ceramic scaffolds for bone tissue engineering, Materials, 3(2010)3867-3910
    A-M. Yousefi, A review of calcium phosphate cements and acrylic bone cements as injectable materials for bone repair and implant fixation, J. Appl. Biomater. Funct. Mater. 17(2019), https://doi.org/10.1177/2280800019872594
    M. Zilbermann, J.J. Elsner, Antibiotic-eluting medical devices for various applications, J. Control. Release, 130(2008)202-215
    L. Du, S. Yang, W. Li, et al., Scaffold composed of porous vancomycin-loaded poly (lactide-co-glycolide) microspheres:A controlled-release drug delivery system with shape-memory effect, Mater. Sci. Eng. C. 78(2017)1172-1178
    Y.F. Zhao, S.C. Loo, Y.Z. Chen, et al., In situ SAXRD study of sol-gel induced well-ordered mesoporous bioglasses for drug delivery, J. Biomed. Mater. Res. A. 85(2008)1032-1042
    A.R. Boccaccini, V. Maquet, Bioresorbable and bioactive polymer/bioglass® composites with tailored pore structure for tissue engineering applications, Compos. Sci. Technol. 63(2003)2417-2429
    H.W. Kim, E.J. Lee, I.K. Jun, et al., Degradation and drug release of phosphate glass/polycaprolactone biological composites for hard-tissue regeneration. J. Biomed. Mater. Res. B Appl. Biomater. 75(2005)34-41
    V. Antoci Jr, C.S. Adams, N.J. Hickok, et al., Antibiotics for local delivery systems cause skeletal cell toxicity in vitro, Clin. Orthop. Relat. Res. 462(2007)200-206
    L. Drago, M. Toscano, M. Bottagisio, Recent evidence on bioactive glass antimicrobial and antibiofilm activity:A mini-review, Materials (Basel). 11(2018), 326
    C. Gauland, Managing lower-extremity osteomyelitis locally with surgical debridement and synthetic calcium sulfate antibiotic tablets, Adv. Skin Wound Care, 24(2011)515-523
    U. Gbureck, E. Vorndran, J.E. Barralet, Modeling vancomycin release kinetics from microporous calcium phosphate ceramics comparing static and dynamic immersion conditions, Acta. Biomater. 4(2008)1480-1486
    Y.Fu, W.J. Kao. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems, Expert Opin. Drug Deliv. 7(2010)429-444
    T.R. Arnett, Extracellular pH regulates bone cell function, J. Nutr.138(2008)415S-418S
    Y.H. Shen, W.C. Liu, K.L. Lin, et al., Interfacial pH:a critical factor for osteoporotic bone regeneration, Langmuir, 27(2011)2701-2708
    Z. Huan, J. Chang, Self-setting properties and in vitro bioactivity of calcium sulfate hemihydrate-tricalcium silicate composite bone cements, Acta Biomater., 3(2007)952-960
    M. Panteli, P.V. Giannoudis, Chronic osteomyelitis:what the surgeon needs to know, Effort Open Rev., 1(2017)128-135
    R. Saikia, A.K. Goswami, H.K. Sharma, Drug delivery to brain and bone marrow:A review, Eur. J. Biomed. Pharma. Sci., 3(2016)604-616
    T. Zhu, Y. Cui, M. Zhang, et al., Engineered three-dimensional scaffolds for enhanced bone regeneration in osteonecrosis, Bioact. Mater. 5(2020)584-601
    L. Cui, J. Zhang, J. Zou et al., Electroactive composite scaffold with locally expressed osteoinductive factor for synergistic bone repair upon electrical stimulation, Biomaterials. 230(2020), 119617
    X. Feng, J. Li, X. Zhang, et al., Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare, J. Control. Release 302(2019)19-41
    S. Li, S. Dong, W. Xu, et al., Antibacterial hydrogels. Adv. Sci (Weinh). 5(2018), 1700527
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (49) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return