Volume 11 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
Gen Liu, Pei-Long Wang, Hui Gao. Visualization analysis of lecithin in drugs based on electrochemiluminescent single gold microbeads[J]. Journal of Pharmaceutical Analysis, 2021, 11(4): 515-522. doi: 10.1016/j.jpha.2021.02.002
Citation: Gen Liu, Pei-Long Wang, Hui Gao. Visualization analysis of lecithin in drugs based on electrochemiluminescent single gold microbeads[J]. Journal of Pharmaceutical Analysis, 2021, 11(4): 515-522. doi: 10.1016/j.jpha.2021.02.002

Visualization analysis of lecithin in drugs based on electrochemiluminescent single gold microbeads

doi: 10.1016/j.jpha.2021.02.002
Funds:

This research is supported by Anhui Provincial Natural Science Foundation (Grant Nos. 2008085QB68 and 1808085QB29), Key Project of Provincial Natural Science Research Foundation of Anhui Universities (Grant Nos. KJ2018A0675 and KJ2018A0389), Foundation of State Key Laboratory of Analytical Chemistry for Life Science (Grant No. SKLACLS2003), and Foundation of Henan Key Laboratory of Biomolecular Recognition and Sensing (Grant No. HKLBRSK1905).

  • Received Date: Aug. 04, 2020
  • Accepted Date: Feb. 06, 2021
  • Rev Recd Date: Jan. 19, 2021
  • Available Online: Jan. 24, 2022
  • Publish Date: Aug. 15, 2021
  • Fast and high-throughput determination of drugs is a key trend in clinical medicine. Single particles have increasingly been adopted in a variety of photoanalytical and electroanalytical applications, and microscopic analysis has been a hot topic in recent years, especially for electrochemiluminescence (ECL). This paper describes a simple ECL method based on single gold microbeads to image lecithin. Lecithin reacts to produce hydrogen peroxide under the successive enzymatic reaction of phospholipase D and choline oxidase. ECL was generated by the electrochemical reaction between a luminol analog and hydrogen peroxide, and ECL signals were imaged by a camera. Despite the heterogeneity of single gold microbeads, their luminescence obeyed statistical regularity. The average luminescence of 30 gold microbeads is correlated with the lecithin concentration, and thus, a visualization method for analyzing lecithin was established. Calibration curves were constructed for ECL intensity and lecithin concentration, achieving detection limits of 0.05 mM lecithin. This ECL imaging platform based on single gold microbeads exhibits outstanding advantages, such as high throughput, versatility and low cost, and holds great potential in disease diagnostics, environmental monitoring and food safety.
  • loading
  • L.K. Cole, J.E. Vance, D.E. Vance, Lecithin biosynthesis and lipoprotein metabolism, Biochim. Biophys. Acta 1821 (2012) 754-761
    M.C. Huang, C.C. Douillet, M. Styblo, Knockout of arsenic (+3 oxidation state) methyltransferase results in sex-dependent changes in lecithin metabolism in mice, Arch. Toxicol. 90 (2016) 3125-3128
    H.Z. Zhang, Y.T. Wang, L.H. Guan, et al., Lipidomics reveals carnitine palmitoyltransferase 1C protects cancer cells from lipotoxicity and senescence, J. Pharm. Anal. 2020, in press, https://doi.org/10.1016/j.jpha.2020.04.004
    Z. Wang, E. Klipfell, B.J. Bennett, et al., Gut flora metabolism of lecithin promotes cardiovascular disease, Nature 472 (2011) 57-63
    R.T. Dufford, D. Nightingale, L.W. Gaddum, Luminescence of grignard compounds in electric and magnetic fields, and related electrical phenomena, J. Am. Chem. Soc. 49 (1927) 1858-1864
    W.W. Zhao, J. Wang, Y.C. Zhu, et al., Quantum dots: electrochemiluminescent and photoelectrochemical bioanalysis, Anal. Chem. 87 (2015) 9520-9531
    E. Rampazzo, S. Bonacchi, D. Genovese, et al., Nanoparticles in metal complexes-based electrogenerated chemiluminescence for highly sensitive applications, Coordin. Chem. Rev. 256 (2012) 1664-1681
    N. Cao, F. Zhao, B. Zeng, A novel ratiometric molecularly imprinted electrochemiluminescence sensor for sensitive and selective detection of sialic acid based on PEI-CdS quantum dots as anodic coreactant and cathodic luminophore, Sensor. Actuat. B-Chem. 313 (2020) 128042
    Y. Wang, W. Guo, Q. Yang, et al., Electrochemiluminescence self-interference spectroscopy with vertical nanoscale resolution, J. Am. Chem. Soc. 142 (2020) 1222-1226
    J. Zhang, R. Jin, D. Jiang, et al., Electrochemiluminescence-based capacitance microscopy for label-free imaging of antigens on the cellular plasma membrane, J. Am. Chem. Soc. 141 (2019) 10294-10299
    N. Liao, J.L. Liu, Y.Q. Chai, et al., DNA structure transition-induced affinity switch for biosensing based on the strong electrochemiluminescence platform from organic microcrystals, Anal. Chem. 92 (2020) 3940-3948
    P. Li, J. Yu, K. Zhao, Efficient enhancement of electrochemiluminescence from tin disulfide quantum dots by hollow titanium dioxide spherical shell for highly sensitive detection of chloramphenicol, Biosens. Bioelectron. 147 (2020) 111790
    M.J. Zhu, J.B. Pan, Z.Q. Wu, et al., Electrogenerated Chemiluminescence Imaging of Electrocatalysis ata Single Au-Pt Janus Nanoparticle, Angew. Chem. Int. Ed. 130 (2018) 4074-4078
    M. Liu, D. Wang, C. Liu, et al., Battery-triggered open wireless electrochemiluminescence in a microfluidic cloth-based bipolar device, Sensor. Actuat. B-Chem. 246 (2017) 327-335
    J.J. Zhang, S. Arbault, N. Sojic, et al., Electrochemiluminescence imaging for bioanalysis, Annu. Rev. Anal. Chem. 12 (2019) 275-295
    A. Zanut, A. Fiorani, S. Rebeccani, et al., Electrochemiluminescence as emerging microscopy techniques, Anal. Bioanal. Chem. 411 (2019) 4375-4382
    C. Ma, Y. Cao, X. Gou, et al., Recent progress in electrochemiluminescence sensing and imaging, Anal. Chem. 92, (2020) 431-454
    T.J. Anderson, P.A. Defnet, B. Zhang, Electrochemiluminescence (ECL)-based electrochemical imaging using a massive array of bipolar ultramicroelectrodes, Anal. Chem. 92 (2020) 6748-6755
    J. Tan, L. Xu, T. Li, et al., Image-contrast technology based on the electrochemiluminescence of porous silicon and its application in fingerprint visualization, Angew. Chem. Int. Ed. 53 (2014) 9822-9826
    G. Liu, B.K. Jin, C. Ma, et al., Potential-Resolved Electrochemiluminescence nanoprobes for visual apoptosis evaluation at single-cell level, Anal. Chem. 91 (2019) 6363-6370
    L. Qi, Y. Xia, W. Qi, et al., Increasing electrochemiluminescence intensity of a wireless electrode array chip by thousands of times using a diode forsensitive visual detection by a digital camera, Anal. Chem. 88 (2016) 1123-1127
    C. Ma, W. Wu, L. Li, et al., Dynamically imaging collision electrochemistry of single electrochemiluminescence nano-emitters, Chem. Sci. 9 (2018) 6167-6375
    A. Zanut, A. Fiorani, S. Canola, et al., Insights into the mechanism of coreactant electrochemiluminescence facilitating enhanced bioanalytical performance, Nat. Commun. 11 (2020) 2668
    R.C. Engstrom, K.W. Johnson, S. DesJarlais, Characterization of electrode heterogeneity with electrogenerated chemiluminescence, Anal. Chem. 59 (1987) 670-673
    M. Sentic, M. Milutinovic, F. Kanoufi, et al., Mapping electrogenerated chemiluminescence reactivity in space: mechanistic insight into model systems used in immunoassays, Chem. Sci. 5 (2014) 2568-2572
    W. Gao, M. Saqib, L. Qi, et al., Recent advances in electrochemiluminescence devices for point-of-care testing, Curr. Opin. Electroche. 3 (2017) 4-10
    H.J. Kwon, E.C. Rivera, M.R.C. Neto, et al., Development of smartphone-based ECL sensor for dopamine detection: Practical approaches, Results in Chemistry 2 (2020) 100029
    E.C. Rivera, J.J. Swerdlow, R.L. Summerscales, et al., Data-driven modeling of smartphone-based electrochemiluminescence sensor data using artificial intelligence, Sensors 20 (2020) 625
    Y. Yao, H. Li, D. Wang, et al., An electrochemiluminescence cloth-based biosensor with smartphone-based imaging for detection of lactate in saliva, Analyst 142 (2017) 3715-3724
    S. Pan, J. Liu, C.M. Hill, Observation of local redox events at individual Au nanoparticles using electrogenerated chemiluminescence microscopy, J. Phys. Chem. C 119 (2015) 27095-27103
    V. Sundaresan, J.W. Monaghan, K.A. Willets, Monitoring simultaneous electrochemical reactions with single particle imaging, ChemElectroChem 5 (2018) 3052-3058
    T. Li, X. Wu, F. Liu, et al., Analytical methods based on the light-scattering of plasmonic nanoparticles at the single particle level with dark-field microscopy imaging, Analyst 142 (2017) 248-256
    Y. Chen, D. Zhao, J. Fu, et al., In situ imaging facet-induced spatial heterogeneity of electrocatalytic reaction activity at the subparticle level via electrochemiluminescence microscopy, Anal. Chem. 91 (2019) 6829-6835
    P. Dutta, D. Han, B. Goudeau, et al., Reactivity mapping of luminescence in space: Insights into heterogeneous electrochemiluminescence bioassays, Biosens. Bioelectron. 165 (2020) 112372
    J. Zhao, Z.T. Jiang, G.R. Lu, et al., Determination of phosphatidylcholine in soybean lecithin samples by high performance liquid chromatography on titania, Anal. Method. 2 (2010) 1779-1783
    A. Girelli, A. Apriceno, G. Esposito, Phosphatidylcholine determination in dietary supplement by coupled enzymes immobilized in a single bioreactor, Biocatalysis and Agricultural Biotechnology 12 (2017) 142-147
    L. Zhou, Y. Wang, X. Wang, et al., Determination of phosphatidylcholine in shrimp by high-resolution mass spectrometry, Anal. Lett. 52 (2019) 308-319
    D. Yu, D. Zou, D. Li, et al., Detection of Phosphatidylcholine Content in Crude Oil with Bio-Enzyme Screen-Printed Electrode, Food Anal. Method. 12 (2019) 229-238
    N. Divecha, R.F. Irvine, Phospholipid signaling, Cell, 80 (1995) 269-278
    M.M. Billah, J.C. Anthes, The regulation and cellular functions of lecithin hydrolysis, Biochem J. 269 (1900) 281-291
    X.M. Chen, B.Y. Su, X.H. Song, Recent advances in electrochemiluminescent enzyme biosensors, Trend. Anal. Chem. 30 (1900) 665-676
    Q. Zhou, H. Chen , Y. Wang, Region-selective electroless gold plating on polycarbonate sheets by UV-patterning in combination with silver activating, Electrochim. Acta 55 (2010) 2542-2549
    S. Zhang, G. Leem, L. Srisombat, et al., Rationally designed ligands that inhibit the aggregation of large gold nanoparticles in solution, J. Am. Chem. Soc. 130 (2008) 113-120
    R.G. Nuzzo, D.L. Allara, Adsorption of bifunctional organic disulfides on gold surfaces, J. Am. Chem. Soc. 105 (1983) 4481-4483
    Y. Wang, J. Deng, J. Di, et al., Electrodeposition of large size gold nanoparticles on indium tin oxide glass and application as refractive index sensor, Electrochem. Commun. 11 (2009) 1034-1037
    J. Li, J. Xie, L. Gao, et al., Au nanoparticles - 3d graphene hydrogel nanocomposite to boost synergistically in situ detection sensitivity toward cell-released nitric oxide, ACS Appl. Mater. Interfaces 7 (2015) 2726-2734
    H. Cui, Y. Xu, Z.F. Zhang, Multichannel electrochemiluminescence of luminol in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled electrode, Anal. Chem. 76 (2004) 4002-4010
    M. Yang, C. Liu, K. Qian, et al., Study on the electrochemiluminescence behavior of ABEI and its application in DNA hybridization analysis, Analyst 127 (2002) 1267-1271
    J. Hong, L. Ming, Y. Tu, Intensifi cation of the electrochemiluminescence of luminol on hollowTiO 2 nanoshell-modified indium tin oxide electrodes, Talanta 128 (2014) 242-247
    Z. Zhou, L. Xu, S. Wu, et al., A novel biosensor array with a wheel-like pattern for glucose, lactate and choline based on electrochemiluminescence imaging, Analyst 139 (2014) 4934-4939
    J. Zhou, G. Ma, Y. Chen, et al., Electrochemiluminescence imaging for parallel single-cell analysis of active membrane cholesterol, Anal. Chem. 87 (2015) 8138-8143
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (157) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return