Volume 11 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Dumei Ma, Libo Zhang, Yingwu Yin, Yuxing Gao, Qian Wang. Spectroscopic studies of the interaction between phosphorus heterocycles and cytochrome P450[J]. Journal of Pharmaceutical Analysis, 2021, 11(6): 757-763. doi: 10.1016/j.jpha.2020.12.004
Citation: Dumei Ma, Libo Zhang, Yingwu Yin, Yuxing Gao, Qian Wang. Spectroscopic studies of the interaction between phosphorus heterocycles and cytochrome P450[J]. Journal of Pharmaceutical Analysis, 2021, 11(6): 757-763. doi: 10.1016/j.jpha.2020.12.004

Spectroscopic studies of the interaction between phosphorus heterocycles and cytochrome P450

doi: 10.1016/j.jpha.2020.12.004
Funds:

This work was supported by the China Scholarship Council and Fujian University-Industry Research Cooperation Project (Project No.: 2018N5013). The authors also wish to thank Thomas M. Makris for providing the OleT plasmid, thank Olivia Manley and Suman Das for their help with protein purification and thank Fiaz Ahmed for offering the help with fluorescence temperature-controlled experiment from Department of Chemistry and Biochemistry of University of South Carolina.

  • Received Date: Apr. 27, 2020
  • Accepted Date: Dec. 17, 2020
  • Rev Recd Date: Dec. 11, 2020
  • Available Online: Jan. 12, 2022
  • Publish Date: Dec. 15, 2021
  • P450 fatty acid decarboxylase OleT from Staphylococcus aureus (OleTSA) is a novel cytochrome P450 enzyme that catalyzes the oxidative decarboxylation of fatty acids to yield primarily terminal alkenes and CO2 or minor α- and β-hydroxylated fatty acids as side-products. In this work, the interactions between a series of cycloalkyl phosphorus heterocycles (CPHs) and OleTSA were investigated in detail by fluorescence titration experiment, ultraviolet–visible (UV–vis) and 31P NMR spectroscopies. Fluorescence titration experiment results clearly showed that a dynamic quenching occurred when CPH-6, a representative CPHs, interacted with OleTSA with a binding constant value of 15.2 × 104 M−1 at 293 K. The thermodynamic parameters (ΔH, ΔS and ΔG) showed that the hydrogen bond and van der Waals force played major roles in the interaction between OleTSA and CPHs. The UV–vis and 31P NMR studies indicated the penetration of CPH-6 into the interior environment of OleTSA, which greatly affects the enzymatic activity of OleTSA. Therefore, our study revealed an effective way to use phosphorus heterocyclic compounds to modulate the activity of cytochrome P450 enzymes.
  • loading
  • F. H. Westheimer, Why nature chose phosphates, Science 235 (1987) 1173−1178
    H. Seto, T. Kuzuyama, Bioactive natural products with carbon-phosphorus bonds and their biosynthesis, Nat. Prod. Rep. 16 (1999) 589−596
    G. Zon, Cyclophosphamide analogues, Prog. Med. Chem. 19 (1982) 205−246
    W. J. Stec, Cyclophosphamide and its congeners, Organophosphorus Chem. 13 (1982) 145−174
    P. Kafarski, B. Lejczak, Biological activity of aminophosphonic acids, Phosphorus, sulfur, and silicon and the related, Elements 63 (1991) 193−215
    O. M. Colvin, An overview of cyclophosphamide development and clinical applications, Curr. Pharm. Des. 5 (1999) 555−560
    P. Kafarski, B. Lejczak, Aminophosphonic acids of potential medical importance, Curr. Med. Chem. 1 (2001) 301−312
    S. Demkowicz, J. Rachon, M. Daskoa, et al., Selected organophosphorus compounds with biological activity. Applications in medicine, RSC Adv. 6 (2016) 7101−7112
    J. B. Rodriguez, C. Gallo-Rodriguez, The role of the phosphorus atom in drug design, ChemMedChem. 14 (2019) 190−216
    R. J. Richardson, Assessment of the neurotoxic potential of chlorpyrifos relative to other organophosphorus compounds: A critical review of the literature, J. Toxicol. Environ. Health, 44 (1995) 135−165
    C. N. Pope, S. Brimijoin, Cholinesterases and the fine line between poison and remedy, Biochem. Pharmacol. 153 (2018) 205−216
    V. Gilard, R. Martino, M. Malet-Martino, et al., Chemical stability and fate of the cytostatic drug ifosfamide and its N-dechloroethylated metabolites in acidic aqueous solutions, J. Med. Chem. 42 (1999) 2542−2560
    E. Budzisz, E. Brzezinska, U. Krajewska, et al., Cytotoxic effects, alkylating properties and molecular modelling of coumarin derivatives and their phosphonic analogues, Eur. J. Med. Chem. 38 (2003) 597−603
    M. D. Soerensen, L. K. A. Blaehr, M. K. Christensen, et al., Cyclic phosphinamides and phosphonamides, novel series of potent matrix metalloproteinase inhibitors with antitumour activity, Bioorg. Med. Chem. 11 (2003) 5461−5484
    A. B. krishna, K. S. Kumar, K. Ramesh, et al., Synthesis, antibacterial and antioxidant properties of newer 1,2-benzoxaphosphol-2-ones, Der Pharma Chemica 1 (2009) 40−49
    L. Clarion, C. Jacquard, O. Sainte-Catherine, et al., Oxaphosphinanes: new therapeutic perspectives for glioblastoma, J. Med. Chem. 55 (2012) 2196−2211
    S. Roy, R. K. Nandi, S. Ganai, et al., Binding interaction of phosphorus heterocycles with bovine serum albumin: a biochemical study, J. Pharm. Anal. 7 (2017) 19−26
    S. Roy, S. K. Saxena, S. Mishra, et al., Spectroscopic evidence of phosphorous heterocycle-DNA interaction and its verification by docking approach, J. Fluoresc. 28 (2018) 373−380
    I. G. Denisov, T. M. Makris, S. G. Sligar, Structure and chemistry of cytochrome P450, Chem. Rev. 105 (2005) 2253−2277
    F. P. Guengerich, Characterization of human cytochrome P450 enzyme. FASEB J. 6 (1992) 745−748
    P. Anzenbacher, E. Anzenbacherova, Cytochromes P450 and metabolism of xenobiotics, Cell. Mol. Life Sci. 58 (2001) 737−747
    D. C. Lamb, M. R. Waterman, S. L. Kelly, Cytochromes P450 and drug discovery, Curr. Opin. Biotech. 18 (2007) 504−512
    A. Veith, B. Moorthy, Role of cytochrome P450s in the generation and metabolism of reactive oxygen species, Cytochromes P450 and drug discovery, Curr. Opin. Toxicol. 7 (2018) 44−51
    M. Foroozesh, J. Sridhar, N. Goyal, et al., Coumarins and P450s, studies reported to-date, Molecules 24 (2019) 1620−1636
    E. Stjernschantz, N. P. E. Vermeulen, C. Oostenbrink, Computational prediction of drug binding and rationalisation of selectivity towards cytochromes P450, Expert. Opin. Drug Metab. Toxicol. 4 (2008) 513−527
    C. C. Ogu, J. L. Maxa, Drug Interactions due to cytochrome P450, BUMC Proc. 13 (2000) 421−423
    S. Prasad, S. Mazumdar, S. Mitra, Binding of camphor to pseudomonas putida cytochrome P450cam: steady-state and picosecond time-resolved fluorescence studies, FEBS Lett. 477 (2000) 157−160
    V. V. Shumyantseva, T. V. Bulko, N. A. Petushkova, et al., Fluorescent assay for riboflavin binding to cytochrome P450 2B4, J. Inorg. Biochem. 98 (2004) 365−370
    J. Shao, J. Chen, T. Li, et al., Spectroscopic and molecular docking studies of the in vitro interaction between puerarin and cytochrome P450, Molecules 19 (2014) 4760-4769
    G. A. Marsch, B. T. Carlson, F. P. Guengerich, 7,8-benzoflavone binding to human cytochrome P450 3A4 reveals complex fluorescence quenching, suggesting binding at multiple protein sites, J. Biomal. Struct. Dyn. 36 (2017) 841−860
    D. Ma, J. Pan, L. Yin, et al., Copper-catalyzed direct oxidative C−H functionalization of unactivated cycloalkanes into cycloalkyl benzo[b]phosphole oxides, Org. Lett. 20 (2018) 3455−3459
    M. A. Rude, T. S. Baron, S. Brubaker, et al., Terminal olefin (1-Alkene) biosynthesis by a novel P450 fatty acid decarboxylase from Jeotgalicoccus species, Appl. Environ. Microb. 77 (2011) 1718−1727
    C. H. Hsieh, X. Huang, J. A. Amaya, et al., The enigmatic P450 decarboxylase OleT is Capable of, but evolved to frustrate, oxygen rebound chemistry, Biochemistry 56 (2017) 3347−3357
    C. Lu, F. Shen, S. Wang, et al., An engineered self-sufficient biocatalyst enables scalable production of linear alpha olefins from carboxylic acids, ACS Catal. 8 (2018) 5794−5798
    C. E. Wise, C. H. Hsieh, N. L. Poplin, Dioxygen activation by the biofuel-generating cytochrome P450 OleT, ACS Catal. 8 (2018) 9342−9352
    J. A. Amaya, C. D. Rutland, T. M. Makris, Mixed regiospecificity compromises alkene synthesis by a cytochrome P450 peroxygenase from Methylobacterium populi, J. Inorg. Biochem. 158 (2016) 11−16
    J. A. Amaya, Mechanisms of decarboxylation in the CYP152 family of cytochrome P450s (Dissertation), University of South Carolina, 2018
    Y. Chen, M. D. Barkley, Toward understanding tryptophan fluorescence in proteins, Biochemistry 37 (1998) 9976−9982
    A. Sharma, S. G. Schulman, Introduction to Fluorescence Spectroscopy, Wiley Press, New York, 1999
    C. Pontremoli, N. Barbero, G. Viscardi, et al., Insight into the interaction of inhaled corticosteroids with human serum albumin: A spectroscopic-based study, J. Pharm. Anal. 8 (2018) 37−44
    P. Sindrewicz, X. Li, E. Yates, Intrinsic tryptophan fluorescence spectroscopy reliably determines galectin-ligand interactions, Scientific Reports 9 (2019) 11851−11862
    J. R. Lakowicz, Principle of Fluorescence Spectroscopy, Springer, New York, 1999
    J. R. Lakowica, G. Weber, Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules, Biochemistry 12 (1973) 4161−4170
    A. T. Buddanavar, S. T. Nandibewoor, Multi-spectroscopic characterization of bovine serum albumin upon interaction with atomoxetine, J. Pharm. Anal. 7 (2017) 148−155
    V, Anbazhagan, R. Renganathan, Study on the binding of 2,3-diazabicyclo[2.2.2]oct-2-ene with bovine serum albumin by fluorescence spectroscopy, J. Lumin. 128 (2008) 1454−1458
    J. Min, X. Meng-Xia, Z. Dong, et al., Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin, J. Mol. Struct. 692 (2004) 71−80
    P. D. Ross, S. Subramanian, Thermodynamics of protein association reactions: forces contributing to stability, Biochemistry 20 (1981) 3096−3102
    G. Nemethy, H. A. Scheraga, Structure of water and hydrophobic bonding in proteins. I. A model for the thermodynamic properties of Liquid Water, J. Phys. Chem. 66 (1962) 1773−1789
    N, Shahabadi, A. Fatahi, Multispectroscopic DNA-binding studies of a tris-chelate nickel(II) complex containing 4,7-diphenyl 1,10-phenanthroline ligands, J. Mol. Struct. 970 (2010) 90−95
    A. Luthra, I. G. Denisov, S. G. Sligar, Spectroscopic features of cytochrome P450 reaction intermediates, Arch. Biochem. Biophys. 507 (2011) 26−35
    A. W. Munro, K. J. McLean, J. L. Grant, Structure and function of the cytochrome P450 peroxygenase enzymes, Biochem. Soc. Trans. 46 (2018) 183−196
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (117) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return