Volume 11 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
Sourav Das, Leader Langbang, Mahabul Haque, Vinay Kumar Belwal, Kripamoy Aguan, Atanu Singha Roy. Biocompatible silver nanoparticles: An investigation into their protein binding efficacies, anti-bacterial effects and cell cytotoxicity studies[J]. Journal of Pharmaceutical Analysis, 2021, 11(4): 422-434. doi: 10.1016/j.jpha.2020.12.003
Citation: Sourav Das, Leader Langbang, Mahabul Haque, Vinay Kumar Belwal, Kripamoy Aguan, Atanu Singha Roy. Biocompatible silver nanoparticles: An investigation into their protein binding efficacies, anti-bacterial effects and cell cytotoxicity studies[J]. Journal of Pharmaceutical Analysis, 2021, 11(4): 422-434. doi: 10.1016/j.jpha.2020.12.003

Biocompatible silver nanoparticles: An investigation into their protein binding efficacies, anti-bacterial effects and cell cytotoxicity studies

doi: 10.1016/j.jpha.2020.12.003
Funds:

Atanu Singha Roy acknowledges the Science and Engineering Research Board (ECR File No. ECR/2016/000159 and CRG File No. CRG/2019/000852), Government of India, for funding this work. The authors thank the Department of Bioscience and Bioengineering, IIT Guwahati for CD measurements. Sourav Das is indebted to TEQIP-III NIT Meghalaya and MH thanks NIT Meghalaya for fellowship. The authors acknowledge Sophisticated Analytical Instrumentation Centre, Tezpur University for P-XRD and Sophisticated Analytical Instrument Facility, North Eastern Hill University (Shillong) for the TEM and energy dispersive X-ray spectroscopy measurements, respectively. Sourav Das would like to thank Amanda N. Abraham, School of Science, RMIT University, Australia, for guidance on the determination of AgNP concentration in the colloidal phase using atomic absorption spectrometry.

  • Received Date: Apr. 07, 2020
  • Accepted Date: Dec. 01, 2020
  • Rev Recd Date: Nov. 27, 2020
  • Available Online: Jan. 24, 2022
  • Publish Date: Aug. 15, 2021
  • Green synthesis of silver nanoparticles (AgNPs) has garnered tremendous interest as conventional methods include the use and production of toxic chemicals, products, by-products and reagents. In this regard, the synthesis of AgNPs using green tea (GT) extract and two of its components, (−)-epigallocatechin gallate (EGCG) and (+)-catechin (Ct) as capping/stabilizing agents, is reported. The synthesized AgNPs showed antibacterial activity against the bacterial strains Staphylococcus aureus and Escherichia coli, along with anticancer activity against HeLa cells. After administering nanoparticles to the body, they come in contact with proteins and results in the formation of a protein corona; hence we studied the interactions of these biocompatible AgNPs with hen egg white lysozyme (HEWL) as a carrier protein. Static quenching mechanism was accountable for the quenching of HEWL fluorescence by the AgNPs. The binding constant (Kb) was found to be higher for EGCG-AgNPs ((2.309 ± 0.018) × 104 M−1) than for GT-AgNPs and Ct-AgNPs towards HEWL. EGCG-AgNPs increased the polarity near the binding site while Ct-AgNPs caused the opposite effect, but GT-AgNPs had no such observable effects. Circular dichroism studies indicated that the AgNPs had no such appreciable impact on the secondary structure of HEWL. The key findings of this research included the synthesis of AgNPs using GT extract and its constituent polyphenols, and showed significant antibacterial, anticancer and protein-binding properties. The –OH groups of the polyphenols drive the in situ capping/stabilization of the AgNPs during synthesis, which might offer new opportunities having implications for nanomedicine and nanodiagnostics.
  • loading
  • L.A. Dykman, N.G. Khlebtsov, Gold nanoparticles in biology and medicine: recent advances and prospects., Acta Naturae. 3 (2011) 34-55
    P. Di Pietro, G. Strano, L. Zuccarello, et al., Gold and Silver Nanoparticles for Applications in Theranostics., Curr. Top. Med. Chem. 16 (2016) 3069-3102
    H. Chugh, D. Sood, I. Chandra, et al., Role of gold and silver nanoparticles in cancer nano-medicine, Artif. Cells, Nanomedicine Biotechnol. 46 (2018) 1210-1220
    Z. Sadowski, Biosynthesis and Application of Silver and Gold Nanoparticles, in: Silver Nanoparticles, IntechOpen, Rijeka Croatia, 2012: pp. 258-276
    A. Kumar, P.K. Vemula, P.M. Ajayan, et al., Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil, Nat. Mater. 7 (2008) 236-241
    S. Gurunathan, K. Kalishwaralal, R. Vaidyanathan, et al., Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli, Colloids Surfaces B Biointerfaces. 74 (2009) 328-335
    X.F. Zhang, Z.G. Liu, W. Shen, et al., Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches, Int. J. Mol. Sci. 17 (2016) E1534
    M.N. Nadagouda, N. Iyanna, J. Lalley, et al., Synthesis of silver and gold nanoparticles using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts, ACS Sustain. Chem. Eng. 2 (2014) 1717-1723
    P. Pourali, S.H. Badiee, S. Manafi, et al., Biosynthesis of gold nanoparticles by two bacterial and fungal strains, Bacillus cereus and Fusarium oxysporum, and assessment and comparison of their nanotoxicity in vitro by direct and indirect assays, Electron. J. Biotechnol. 29 (2017) 86-93
    Z. Molnar, V. Bodai, G. Szakacs, et al., Green synthesis of gold nanoparticles by thermophilic filamentous fungi, Sci. Rep. 8 (2018) 3943
    A. Mourato, M. Gadanho, A.R. Lino, et al., Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts, Bioinorg. Chem. Appl. 2011 (2011) 546074
    T. Kathiraven, A. Sundaramanickam, N. Shanmugam, et al., Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens, Appl. Nanosci. 5 (2015) 499-504
    J. Fei, J. Zhao, C. Du, et al., One-pot ultrafast self-assembly of autofluorescent polyphenol-based core@shell nanostructures and their selective antibacterial applications, ACS Nano. 8 (2014) 8529-8536
    X. Yan, J. Blacklock, J. Li, et al., One-pot synthesis of polypeptide-gold nanoconjugates for in vitro gene transfection, ACS Nano. 6 (2012) 111-117
    C. Manach, A. Scalbert, C. Morand, et al., Polyphenols: food sources and bioavailability, Am. J. Clin. Nutr. 79 (2004) 727-747
    G. Sathishkumar, R. Bharti, P.K. Jha, et al., Dietary flavone chrysin (5,7-dihydroxyflavone ChR) functionalized highly-stable metal nanoformulations for improved anticancer applications, RSC Adv. 5 (2015) 89869-89878
    N. Sahu, D. Soni, B. Chandrashekhar, et al., Synthesis of silver nanoparticles using flavonoids: hesperidin, naringin and diosmin, and their antibacterial effects and cytotoxicity, Int. Nano Lett. 6 (2016) 173-181
    S. Jain, M.S. Mehata, Medicinal Plant Leaf Extract and Pure Flavonoid Mediated Green Synthesis of Silver Nanoparticles and their Enhanced Antibacterial Property, Sci. Rep. 7 (2017) 15867
    Y. Miyata, T. Matsuo, K. Araki, et al., Anticancer Effects of Green Tea and the Underlying Molecular Mechanisms in Bladder Cancer, Medicines. 5 (2018) 87
    Z.D. Ozdal, E. Sahmetlioglu, I. Narin, et al., Synthesis of gold and silver nanoparticles using flavonoid quercetin and their effects on lipopolysaccharide induced inflammatory response in microglial cells, 3 Biotech. 9 (2019) 212
    S. Kakutani, H. Watanabe, N. Murayama, Green tea intake and risks for dementia, Alzheimer’s disease, mild cognitive impairment, and cognitive impairment: A systematic review, Nutrients. 11 (2019) 1165
    Green tea consumption, World Green Tea Association, http://www.o-cha.net/english/teacha/distribution/greentea3.html. (accessed on 5 November, 2019).
    W. Reygaert, An Update on the Health Benefits of Green Tea, Beverages. 3 (2017) 6
    M. Isemura, N. Miyoshi, M. Pervin, et al., Green tea catechins for well-being and therapy: prospects and opportunities, Bot. Targets Ther. 5 (2015) 85-96
    V. Sanna, N. Pala, G. DessI, et al., Single-step green synthesis and characterization of gold-conjugated polyphenol nanoparticles with antioxidant and biological activities, Int. J. Nanomedicine. 9 (2014) 4935-4951
    L.A. Levchenko, S.A. Golovanova, N. V. Lariontseva, et al., Synthesis and study of gold nanoparticles stabilized by bioflavonoids, Russ. Chem. Bull. 60 (2011) 426
    F.J. Osonga, A. Akgul, I. Yazgan, et al., Flavonoid-derived anisotropic silver nanoparticles inhibit growth and change the expression of virulence genes in Escherichia coli SM10, RSC Adv. 8 (2018) 4649-4661
    M.C. Moulton, L.K. Braydich-Stolle, M.N. Nadagouda, et al., Synthesis, characterization and biocompatibility of “green” synthesized silver nanoparticles using tea polyphenols, Nanoscale. 2 (2010) 763-770
    A.N. Abraham, T.K. Sharma, V. Bansal, et al., Phytochemicals as Dynamic Surface Ligands to Control Nanoparticle-Protein Interactions, ACS Omega. 3 (2018) 2220-2229
    M. Mahmoudi, M.A. Sahraian, M.A. Shokrgozar, et al., Superparamagnetic iron oxide nanoparticles: Promises for diagnosis and treatment of multiple sclerosis, ACS Chem. Neurosci. 2 (2011) 118-140
    A.A. Shemetov, I. Nabiev, A. Sukhanova, Molecular interaction of proteins and peptides with nanoparticles, ACS Nano. 6 (2012) 4585-4602
    T. Cedervall, I. Lynch, S. Lindman, et al., Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles, Proc. Natl. Acad. Sci. 104 (2007) 2050-2055
    P.S. Nayak, S.M. Borah, H. Gogoi, et al., Lactoferrin adsorption onto silver nanoparticle interface: Implications of corona on protein conformation, nanoparticle cytotoxicity and the formulation adjuvanticity, Chem. Eng. J. 361 (2019) 470-484
    J. Hankiewicz, E. Swierczek, Lysozyme in human body fluids, Clin. Chim. Acta. 57 (1974) 205-209
    E. Aine, P. Mo¨rsky, Lysozyme Concentration in Tears-Assessment of Reference Values in Normal Subjects, Acta Ophthalmol. 62 (1984) 932-938
    S. Das, S. Santra, M.A. Rohman, et al., An insight into the binding of 6-hydroxyflavone with hen egg white lysozyme: a combined approach of multi-spectroscopic and computational studies, J. Biomol. Struct. Dyn. 37 (2019) 4019-4034
    C.C.F. Blake, D.F. Koenig, G.A. Mair, et al., Structure of hen egg-white lysozyme, a three dimensional fourier synthesis at 2∼Angstroms resolution, Nature. 206 (1965) 757-761
    T. Imoto, L.S. Forster, J. A. Rupley, et al., Fluorescence of lysozyme: emissions from tryptophan residues 62 and 108 and energy migration, Proc. Natl. Acad. Sci. U. S. A. 69 (1972) 1151-1155
    L.J. Smith, M.J. Sutcliffe, C. Redfield, et al, Structure of Hen Lysozyme in Solution, J. Mol. Biol. 229 (1993) 930-944
    S. Das, S. Pahari, S. Sarmah, et al., Lysozyme-luteolin binding: Molecular insights into the complexation process and the inhibitory effects of luteolin towards protein modification, Phys. Chem. Chem. Phys. 21 (2019) 12649-12666
    S. Das, N. Bora, M.A. Rohman, et al., Molecular recognition of bio-active flavonoids quercetin and rutin by bovine hemoglobin: an overview of the binding mechanism, thermodynamics and structural aspects through multi-spectroscopic and molecular dynamics simulation studies, Phys. Chem. Chem. Phys. 20 (2018) 21668-21684
    S. Das, M.A. Rohman, A. Singha Roy, Exploring the non-covalent binding behaviours of 7-hydroxyflavone and 3-hydroxyflavone with hen egg white lysozyme: Multi-spectroscopic and molecular docking perspectives, J. Photochem. Photobiol. B Biol. 180 (2018) 25-38
    B. Tu, Z.-F. Chen, Z.-J. Liu, et al., Study of the structure-activity relationship of flavonoids based on their interaction with human serum albumin, RSC Adv. 5 (2015) 73290-73300
    H.L. Yue, Y.J. Hu, J. Chen, et al., Green synthesis and physical characterization of Au nanoparticles and their interaction with bovine serum albumin, Colloids Surfaces B Biointerfaces. 122 (2014) 107-114
    D.J. Zeeb, B.C. Nelson, K. Albert, et al., Separation and identification of twelve catechins in tea using liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry, Anal. Chem. 72 (2000) 5020-5026
    B. S. Raghavan, S. Kondath, R. Anantanarayanan, et al., Kaempferol mediated synthesis of gold nanoparticles and their cytotoxic effects on MCF-7 cancer cell line, Process Biochem. 50 (2015) 1966-1976
    R. Shukla, N. Chanda, A. Zambre, A. Upendran, et al., Laminin receptor specific therapeutic gold nanoparticles (198 AuNP-EGCg) show efficacy in treating prostate cancer, Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 12426-12431
    A.M. Awwad, N.M. Salem, A.O. Abdeen, Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity, Int. J. Ind. Chem. 4 (2013) 29
    E.S. Al-Sheddi, N.N. Farshori, M.M. Al-Oqail, et al., Anticancer Potential of Green Synthesized Silver Nanoparticles Using Extract of Nepeta deflersiana against Human Cervical Cancer Cells (HeLA), Bioinorg. Chem. Appl. 2018:93907 (2018). doi: 10.1155/2018/9390784
    S.S. Bag, A. Banerjee, A. Singh, et al., Green Synthesis of Silver Nanoparticle using Sechium edule Aqueous Extract and Study of Antimicrobial and Catalytic Activity, Curr. Nanomater. 3 (2019) 140-146
    S. Salatin, S. M. Dizaj, A. Y. Khosroushahi, Effect of the surface modification, size, and shape on cellular uptake of nanoparticles, Cell Biol. Int. 39 (2015) 881-890
    V.S. Radhakrishnan, M.K.R. Mudiam, M. Kumar, et al., Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicity in fungal pathogen (Candida albicans), Int. J. Nanomedicine. 13 (2018) 2647-2663
    F. Benyettou, R. Rezgui, F. Ravaux, et al., Synthesis of silver nanoparticles for the dual delivery of doxorubicin and alendronate to cancer cells, J. Mater. Chem. B. 3 (2015) 7237-7245
    D. Wang, D. Kim, C.H. Shin, et al., Evaluation of epigallocatechin gallate (EGCG) to remove Pb(II) using spectroscopic and quantum chemical calculation method, Environ. Earth Sci. 78 (2019). doi: 10.1007/s12665-019-8127-1
    R.K. Harwansh, P.K. Mukherjee, A. Kar, et al., Enhancement of photoprotection potential of catechin loaded nanoemulsion gel against UVA induced oxidative stress, J. Photochem. Photobiol. B Biol. 160 (2016) 318-329
    C.S. Robb, S.E. Geldart, J.A. Seelenbinder, et al., Analysis of green tea constituents by HPLC-FTIR, J. Liq. Chromatogr. Relat. Technol. 25 (2002) 787-801
    M.A. Siddiquee, M. ud din Parray, S.H. Mehdi, et al., Green synthesis of silver nanoparticles from Delonix regia leaf extracts: In-vitro cytotoxicity and interaction studies with bovine serum albumin, Mater. Chem. Phys. 242 (2020). doi: 10.1016/j.matchemphys.2019.122493
    K.D. Nugent, W.G. Burton, T.K. Slattery, et al., Separation of proteins by reversed-phase high-performance liquid chromatography. II. Optimizing sample pretreatment and mobile phase conditions, J. Chromatogr. A. 443 (1988) 381-397
    S. Ashrafpour, T. T. Moghadam, Interaction of silver nanoparticles with Lysozyme: Functional and structural investigations, Surfaces and Interfaces. 10 (2018) 216-221
    A. S. Sharma, M. Ilanchelian, Comprehensive Multispectroscopic Analysis on the Interaction and Corona Formation of Human Serum Albumin with Gold/Silver Alloy Nanoparticles, J. Phys. Chem. B. 119 (2015) 9461-9476
    S. Sen, S. Konar, B. Das, et al., Inhibition of fibrillation of human serum albumin through interaction with chitosan-based biocompatible silver nanoparticles, RSC Adv. 6 (2016) 43104-43115
    N.S. AL-Thabaiti, M.A. Malik, Z. Khan, Protein interactions with silver nanoparticles: Green synthesis, and biophysical approach, Int. J. Biol. Macromol. 95 (2017) 421-428
    M.J. Panzner, S.M. Bilinovich, W.J. Youngs, et al., Silver metallation of hen egg white lysozyme: X-ray crystal structure and NMR studies, Chem. Commun. 47 (2011) 12479-12481
    K.S. Ghosh, B.K. Sahoo, S. Dasgupta, Spectrophotometric studies on the interaction between (-)-epigallocatechin gallate and lysozyme, Chem. Phys. Lett. 452 (2008) 193-197
    F. Shen, F. Niu, J. Li, et al., Interactions between tea polyphenol and two kinds of typical egg white proteins-ovalbumin and lysozyme: Effect on the gastrointestinal digestion of both proteins in vitro, Food Res. Int. 59 (2014) 100-107
    J.R. Lakowicz, Principles of fluorescence spectroscopy, Third, Springer, 2006. doi: 10.1007/978-0-387-46312-4
    S.H.D.P. Lacerda, J.J. Park, et al., Interaction of Gold Nanoparticles with Common Human Blood Proteins, ACS Nano. 4 (2010) 365-379
    D.L. Nelson, M.M. Cox, Protein Function, in: Lehninger Princ. Biochem Seventh Ed., Seventh, W.H. Freeman and Company, New York, 2013: pp. 157-172
    J.B.F. Llyod, Synchronized Excitation of Fluorescence Emission Spectra, Nat. Phys. Sci. 231 (1971) 64-65
    C. Barakat, D. Patra, Combining time-resolved fluorescence with synchronous fluorescence spectroscopy to study bovine serum albumin-curcumin complex during unfolding and refolding processes, Luminescence. 28 (2013) 149-155
    J.N. Miller, Recent advances in molecular luminescence analysis, Proc. Anal. Div. Chem. Soc. 16 (1979) 203-208
    F. Tanaka, L.S. Forster, P.K. Pal, et al., The Circular Dichroism of Lysozyme, J. Biol. Chem. 250 (1975) 6977-6982
    L. Whitmore, B.A. Wallace, DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data, Nucleic Acids Res. 32 (2004) W668-W673
    S. Roy, Binding behaviors of greenly synthesized silver nanoparticles - Lysozyme interaction: Spectroscopic approach, J. Mol. Struct. 1154 (2018) 145-151
    S. Roy, S.K. Saxena, S. Mishra, et al., Ecofriendly gold nanoparticles - Lysozyme interaction: Thermodynamical perspectives, J. Photochem. Photobiol. B Biol. 174 (2017) 284-290
    Z. Aghili, S. Taheri, H.A. Zeinabad, et al., Investigating the interaction of Fe nanoparticles with lysozyme by biophysical and molecular docking studies, PLoS One. 11 (2016) e0164878
    M. Rai, A. Yadav, A. Gade, Silver nanoparticles as a new generation of antimicrobials, Biotechnol. Adv. 27 (2009) 76-83
    W. Xu, Y. Fan, X. Liu, et al., Catalytic and antibacterial properties of silver nanoparticles green biosynthesized using soluble green tea powder, Mater. Res. Express. (2018). doi: 10.1088/2053-1591/aabb71
    W.R. Rolim, M.T. Pelegrino, B. de Araujo Lima, et al., Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity, Appl. Surf. Sci. 463 (2019) 66-74
    R.A. Hamouda, M.H. Hussein, R.A. Abo-elmagd, et al., Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica, Sci. Rep. 9 (2019). doi: 10.1038/s41598-019-49444-y
    S. Shrivastava, T. Bera, A. Roy, et al., Characterization of enhanced antibacterial effects of novel silver nanoparticles, Nanotechnology. 18 (2007). doi: 10.1088/0957-4484/18/22/225103
    K. Shivaji, S. Mani, P. Ponmurugan, et al., Green-Synthesis-Derived CdS Quantum Dots Using Tea Leaf Extract: Antimicrobial, Bioimaging, and Therapeutic Applications in Lung Cancer Cells, ACS Appl. Nano Mater. 1 (2018) 1683-1693
    V. V. Makarov, A.J. Love, O. V. Sinitsyna, et al., “Green” nanotechnologies: Synthesis of metal nanoparticles using plants, Acta Naturae. 6 (2014) 35-44
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (193) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return