Volume 11 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
Jakob Hübner, Jean-Baptiste Coty, Yan Busby, Denis Spitzer. Formation mechanisms of sub-micron pharmaceutical composite particles derived from far- and near-field Raman microscopy[J]. Journal of Pharmaceutical Analysis, 2021, 11(4): 480-489. doi: 10.1016/j.jpha.2020.12.002
Citation: Jakob Hübner, Jean-Baptiste Coty, Yan Busby, Denis Spitzer. Formation mechanisms of sub-micron pharmaceutical composite particles derived from far- and near-field Raman microscopy[J]. Journal of Pharmaceutical Analysis, 2021, 11(4): 480-489. doi: 10.1016/j.jpha.2020.12.002

Formation mechanisms of sub-micron pharmaceutical composite particles derived from far- and near-field Raman microscopy

doi: 10.1016/j.jpha.2020.12.002
Funds:

The authors thank their colleague Cédric Martin (Spinofrin SAS, Boulogne-Billancourt, France) for recording the presented SEM image. The Synthesis, Irradiation, and Analysis of Materials (SIAM), technological platform of University of Namur is acknowledged for XPS measurements. The authors also thank the Direction Générale de l’Armement (DGA, France) and the Bundesamt für Ausrüstung, Informationstechnik und Nutzung der Bundeswehr (BAAINBw, Germany). ISL is a joint initiative of the Ministère Armées (France) and the Bundesministerium der Verteidigung (Germany) and is actively supporting the NS3E joint laboratory including the Centre National de la Recherche Scientifique (CNRS) and the University of Strasbourg (UNISTRA).

  • Received Date: Apr. 13, 2020
  • Accepted Date: Dec. 02, 2020
  • Rev Recd Date: Oct. 16, 2020
  • Available Online: Jan. 24, 2022
  • Publish Date: Aug. 15, 2021
  • Surface enhanced Raman spectroscopy (SERS) and confocal Raman microscopy are applied to investigate the structure and the molecular arrangement of sub-micron furosemide and polyvinylpyrrolidone (furosemide/PVP) particles produced by spray flash evaporation (SFE). Morphology, size and crystallinity of furosemide/PVP particles are analyzed by scanning electron microscopy (SEM) and X-ray powder diffraction (XRPD). Far-field Raman spectra and confocal far-field Raman maps of furosemide/PVP particles are interpreted based on the far-field Raman spectra of pure furosemide and PVP precursors. Confocal far-field Raman microscopy shows that furosemide/PVP particles feature an intermixture of furosemide and PVP molecules at the sub-micron scale. SERS and surface-enhanced confocal Raman microscopy (SECoRM) are performed on furosemide, PVP and furosemide/PVP composite particles sputtered with silver (40 nm). SERS and SECoRM maps reveal that furosemide/PVP particle surfaces mainly consist of PVP molecules. The combination of surface and bulk sensitive analyses reveal that furosemide/PVP sub-micron particles are formed by the agglomeration of primary furosemide nano-crystals embedded in a thin PVP matrix. Interestingly, both far-field Raman microscopy and SECoRM provide molecular information on a statistically-relevant amount of sub-micron particles in a single microscopic map; this combination is thus an effective and time-saving tool for investigating organic sub-micron composites.
  • loading
  • J.K. Patra, G. Das, L.F. Fraceto, et al., Nano based drug delivery systems: recent developments and future prospects, J. Nanobiotechnology 16 (2018) 71
    H. Lu, J. Wang, T. Wang, et al., Recent progress on nanostructures for drug delivery applications, J. Nanomater 2016 (2016) 5762431
    K. McNamara and S.A.M. Tofail, Nanosystems: the use of nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical applications, Phys. Chem. Chem. Phys 17 (2015) 27981-27995
    O.N. Oliveira, R.M. Iost, J.R. Siqueira, et al., Nanomaterials for Diagnosis: Challenges and Applications in Smart Devices Based on Molecular Recognition, ACS Appl. Mater. Inter. 6 (2014) 14745-14766
    S. Klein, J. Hubner, C. Menter, et al., A Facile One-Pot Synthesis of Water-Soluble, Patchy Fe3O4-Au Nanoparticles for Application in Radiation Therapy, Applied Sciences 9 (2019) 15
    S. Onoue, S. Yamada and H.-K. Chan, Nanodrugs: pharmacokinetics and safety, Int J Nanomedicine 9 (2014) 1025-1037
    Y. Kawabata, K. Wada, M. Nakatani, et al., Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications, Int. J. Pharm. 420 (2011) 1-10
    R. Nagarwal, R. Kumar, M. Dhanawat, et al., Nanocrystal technology in the delivery of poorly soluble drugs: an overview, Curr. Drug. Deliv. 8 (2011) 398-406
    F. Kesisoglou, S. Panmai and Y. Wu, Nanosizing - Oral formulation development and biopharmaceutical evaluation, Adv. Drug Deliv. Rev. 59 (2007) 631-644
    A.Z. Mirza and F.A. Siddiqui, Nanomedicine and drug delivery: a mini review, Int. Nano Lett. 4 (2014) 94
    K. Santhi, S. Dhanaraj, V. Joseph, et al., A study on the preparation and anti-tumor efficacy of bovine serum albumin nanospheres containing 5-fluorouracil, Drug Dev. Ind. Pharm. 28 (2002) 1171-1179
    L. Mu and S. Feng, A novel controlled release formulation for the anticancer drug paclitaxel (Taxol®): PLGA nanoparticles containing vitamin E TPGS, J. Controlled Release 86 (2003) 33-48
    J.S. Chawla and M.M. Amiji, Biodegradable poly (ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen, Int. J. Pharm. 249 (2002) 127-138
    G. Van den Mooter, The use of amorphous solid dispersions: A formulation strategy to overcome poor solubility and dissolution rate, Drug Discov. Today Technol. 9 (2012) e79-e85
    Y. He and C. Ho, Amorphous Solid Dispersions: Utilization and Challenges in Drug Discovery and Development, J. Pharm. Sci. 104 (2015) 3237-3258
    X. Ma and R.O. Williams, Characterization of amorphous solid dispersions: An update, Journal of Drug Delivery Science and Technology 50 (2019) 113-124
    J.-B. Coty and C. Vauthier, Characterization of nanomedicines: A reflection on a field under construction needed for clinical translation success, J. Controlled Release 275 (2018) 254-268
    L.J. Johnston, N. Gonzalez-Rojano, K.J. Wilkinson, et al., Key challenges for evaluation of the safety of engineered nanomaterials, NanoImpact 18 (2020) 100219
    J.-M. Rabanel, V. Adibnia, S.F. Tehrani, et al., Nanoparticle heterogeneity: an emerging structural parameter influencing particle fate in biological media?, Nanoscale 11 (2019) 383-406
    J. Hubner, V. Pichot, M. Guillevic, et al., Structure Investigation of Energetic Nanocomposites Produced by Spray Flash Evaporation via AFM-TERS, at ICORS, South Korea, 2018. DOI: 10.13140/RG.2.2.17580.10888
    T. Deckert-Gaudig, V. Pichot, D. Spitzer, et al., High-Resolution Raman Spectroscopy for the Nanostructural Characterization of Explosive Nanodiamond Precursors, ChemPhysChem 18 (2017) 175-178
    J. Hubner, T. Deckert-Gaudig, J. Glorian, et al., Surface Characterization of Nanoscale Co-Crystals Enabled through Tip Enhanced Raman Spectroscopy, Nanoscale 12 (2020) 10306-10319
    J. Langer, D. Jimenez de Aberasturi, J. Aizpurua, et al., Present and Future of Surface-Enhanced Raman Scattering, ACS Nano 14 (2020) 28-117
    G. McNay, D. Eustace, W.E. Smith, et al., Surface-Enhanced Raman Scattering (SERS) and Surface-Enhanced Resonance Raman Scattering (SERRS): A Review of Applications, Appl. Spectrosc. 65 (2011) 825-837
    R. Pilot, R. Signorini, C. Durante, et al., A Review on Surface-Enhanced Raman Scattering, Biosensors 9 (2019)
    P.L. Stiles, J.A. Dieringer, N.C. Shah, et al., Surface-enhanced Raman spectroscopy, Annu. Rev. Anal. Chem. 1 (2008) 601-626
    D.A. Wheeler, T.D. Green, H. Wang, et al., Optical Properties and Coherent Vibrational Oscillations of Gold Nanostars, Chem. Phys. Lett. 543 (2012) 127
    B.L. Sanchez-Gaytan, P. Swanglap, T.J. Lamkin, et al., Spiky Gold Nanoshells: Synthesis and Enhanced Scattering Properties, J. Phys. Chem. C 116 (2012) 10318
    Q. Zhang, Y.H. Lee, I.Y. Phang, et al., Hierarchical 3D SERS Substrates Fabricated by Integrating Photolithographic Microstructures and Self-Assembly of Silver Nanoparticles, Small 10 (2014) 2703-2711
    T. Itoh, Y.S. Yamamoto, Y. Kitahama, et al., One-Dimensional Plasmonic Hotspots Located Between Silver Nanowire Dimers Evaluated by Surface-Enhanced Resonance Raman Scattering, Phys. Rev. B: Condens. Matter Mater. Phys. 95 (2017) 115441
    M.I. Stockman, Spasers Explained, Nat. Photonics 2 (2008) 327
    B. Risse, D. Hassler and D. Spitzer Preparation of Nanoparticles by Flash Evaporation: USA, US20150000846A1, 2015
    B. Risse, Continuous formation of submicron energetic particles by the flash-evaporation technique, Chem. Eng. J. 203 (2012)
    D. Spitzer, B. Risse, F. Schnell, et al., Continuous Engineering of Nano-Cocrystals for Medical and Energetic Applications, Sci. Rep. 4 (2014) 6575
    M. Klaumunzer, J. Hubner and D. Spitzer, Production of Energetic Nanomaterials by Spray Flash Evaporation, World Academy of Science, Engineering and Technology, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering 10 (2016) 1079-1083
    A. Seve, V. Pichot, F. Schnell, et al., Trinitrotoluene Nanostructuring by Spray Flash Evaporation Process, Propellants Explos. Pyrotech. 42 (2017) 1051-1056
    V. Pichot, M. Comet, B. Risse, et al., Detonation of Nanosized Explosive: New Mechanistic Model for Nanodiamond Formation, Diamond Relat. Mater. 54 (2015) 59-63
    M. Klaumunzer, F. Pessina and D. Spitzer, Indicating Inconsistency of Desensitizing High Explosives Against Impact through Recrystallization at the Nanoscale, J. Energ. Mater. (2016) 1-10
    O. Bolukbasi and A. Yilmaz, X-ray structure analysis and vibrational spectra of Furosemide, Vib. Spectrosc 62 (2012) 42-49
    H. Mao, J. Feng, X. Ma, et al., One-dimensional silver nanowires synthesized by self-seeding polyol process, J. Nanopart. Res. 14 (2012) 887
    S.L. Smitha, K.M. Nissamudeen, D. Philip, et al., Studies on surface plasmon resonance and photoluminescence of silver nanoparticles, Spectrochim. Acta A 71 (2008) 186-190
    E. Bailo and V. Deckert, Tip-Enhanced Raman Spectroscopy of Single RNA Strands: Towards a Novel Direct-Sequencing Method, Angew. Chem. Int. Ed. 47 (2008) 1658-1661
    H. Watanabe, Y. Ishida, N. Hayazawa, et al., Tip-Enhanced Near-Field Raman Analysis of Tip-Pressurized Adenine Molecule, Phys. Rev. B: Condens. Matter 69 (2004) 155418
    E. Bailo and V. Deckert, Tip-Enhanced Raman Scattering, Chem. Soc. Rev. 37 (2008) 921-930
    T. Deckert-Gaudig, A. Taguchi, S. Kawata, et al., Tip-Enhanced Raman Spectroscopy - From Early Developments to Recent Advances, Chem. Soc. Rev. 46 (2017) 4077-4110
    S. Trautmann, J. Aizpurua, I. Gotz, et al., A Classical Description of Subnanometer Resolution by Atomic Features in Metallic Structures, Nanoscale 9 (2017) 391-401
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (103) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return