Zhongjian Chen, Xiancong Huang, Yun Gao, Su Zeng, Weimin Mao. Plasma-metabolite-based machine learning is a promising diagnostic approach for esophageal squamous cell carcinoma investigation[J]. Journal of Pharmaceutical Analysis, 2021, 11(4): 505-514. doi: 10.1016/j.jpha.2020.11.009
Citation: Zhongjian Chen, Xiancong Huang, Yun Gao, Su Zeng, Weimin Mao. Plasma-metabolite-based machine learning is a promising diagnostic approach for esophageal squamous cell carcinoma investigation[J]. Journal of Pharmaceutical Analysis, 2021, 11(4): 505-514. doi: 10.1016/j.jpha.2020.11.009

Plasma-metabolite-based machine learning is a promising diagnostic approach for esophageal squamous cell carcinoma investigation

doi: 10.1016/j.jpha.2020.11.009
Funds:

D Program Projects in Zhejiang Province (Grant No. 2018C04009), and 1022 Talent Training Program of Zhejiang Cancer Hospital.

This work was supported by the National Natural Science Foundation of China (Grant Nos. 81672315, 81802276, and 81302840), Key R&

  • Received Date: May 21, 2020
  • Accepted Date: Nov. 24, 2020
  • Rev Recd Date: Nov. 23, 2020
  • Available Online: Jan. 24, 2022
  • Publish Date: Aug. 15, 2021
  • The aim of this study was to develop a diagnostic strategy for esophageal squamous cell carcinoma (ESCC) that combines plasma metabolomics with machine learning algorithms. Plasma-based untargeted metabolomics analysis was performed with samples derived from 88 ESCC patients and 52 healthy controls. The dataset was split into a training set and a test set. After identification of differential metabolites in training set, single-metabolite-based receiver operating characteristic (ROC) curves and multiple-metabolite-based machine learning models were used to distinguish between ESCC patients and healthy controls. Kaplan-Meier survival analysis and Cox proportional hazards regression analysis were performed to investigate the prognostic significance of the plasma metabolites. Finally, twelve differential plasma metabolites (six up-regulated and six down-regulated) were annotated. The predictive performance of the six most prevalent diagnostic metabolites through the diagnostic models in the test set were as follows: arachidonic acid (accuracy: 0.887), sebacic acid (accuracy: 0.867), indoxyl sulfate (accuracy: 0.850), phosphatidylcholine (PC) (14:0/0:0) (accuracy: 0.825), deoxycholic acid (accuracy: 0.773), and trimethylamine N-oxide (accuracy: 0.653). The prediction accuracies of the machine learning models in the test set were partial least-square (accuracy: 0.947), random forest (accuracy: 0.947), gradient boosting machine (accuracy: 0.960), and support vector machine (accuracy: 0.980). Additionally, survival analysis demonstrated that acetoacetic acid was an unfavorable prognostic factor (hazard ratio (HR): 1.752), while PC (14:0/0:0) (HR: 0.577) was a favorable prognostic factor for ESCC. This study devised an innovative strategy for ESCC diagnosis by combining plasma metabolomics with machine learning algorithms and revealed its potential to become a novel screening test for ESCC.
  • H. Liang, J. H. Fan, Y. L. Qiao, Epidemiology, etiology, and prevention of esophageal squamous cell carcinoma in China, Cancer Biol. Med. 14 (2017) 33-41
    J. Cheng, H. Jin, X. Hou, et al., Disturbed tryptophan metabolism correlating to progression and metastasis of esophageal squamous cell carcinoma, Biochem. Biophys. Res. Commun. 486 (2017) 781-787
    V. Tiasto, V. Mikhailova, V. Gulaia, et al., Esophageal cancer research today and tomorrow: lessons from algae and other perspectives, AIMS Genet. 5 (2018) 75-90
    S. Ohashi, S. Miyamoto, O. Kikuchi, et al., Recent advances from basic and clinical studies of esophageal squamous cell carcinoma, Gastroenterology. 149 (2015) 1700-1715
    J. B. Hulscher, J. W. van Sandick, A. G. de Boer, et al., Extended transthoracic resection compared with limited transhiatal resection for adenocarcinoma of the esophagus, N. Engl. J. Med. 347 (2002) 1662-1669
    U. Testa, G. Castelli, E. Pelosi, Esophageal Cancer: Genomic and Molecular Characterization, Stem Cell Compartment and Clonal Evolution, Medicines (Basel). 4 (2017)
    N. N. Pavlova, C. B. Thompson, The emerging hallmarks of cancer metabolism, Cell Metabol. 23 (2016) 27-47
    J. Zheng, Energy metabolism of cancer: glycolysis versus oxidative phosphorylation (Review), Oncol. Lett. 4 (2012) 1151-1157
    L. Vettore, R. L. Westbrook, D. A. Tennant, New aspects of amino acid metabolism in cancer, Br. J. Canc. 122 (2020) 150-156
    X. Luo, C. Cheng, Z. Tan, et al., Emerging roles of lipid metabolism in cancer metastasis, Mol. Canc. 16 (2017) 76
    C. Corbet, O. Feron, Emerging roles of lipid metabolism in cancer progression, Curr. Opin. Clin. Nutr. Metab. Care 20 (2017) 254-260
    S. E. Weinberg, N. S. Chandel, Targeting mitochondria metabolism for cancer therapy, Nat. Chem. Biol. 11 (2015) 9-15
    L. Wang, J. Chen, L. Chen, et al., 1H-NMR based metabonomic profiling of human esophageal cancer tissue, Mol. Canc. 12 (2013) 25
    J. Xu, Y. Chen, R. Zhang, et al., Global metabolomics reveals potential urinary biomarkers of esophageal squamous cell carcinoma for diagnosis and staging, Sci. Rep. 6 (2016) 35010
    S. A. Mir, P. Rajagopalan, A. P. Jain, et al., LC-MS-based serum metabolomic analysis reveals dysregulation of phosphatidylcholines in esophageal squamous cell carcinoma, J. Proteomics. 127 (2015) 96-102
    H. Jin, F. Qiao, L. Chen, et al., Serum metabolomic signatures of lymph node metastasis of esophageal squamous cell carcinoma, J. Proteome Res. 13 (2014) 4091-4103
    C. Sun, T. Li, X. Song, et al., Spatially resolved metabolomics to discover tumor-associated metabolic alterations, Proc. Natl. Acad. Sci. U.S.A. 116 (2019) 52-57
    E. Le Rhun, J. Seoane, M. Salzet, et al., Liquid biopsies for diagnosing and monitoring primary tumors of the central nervous system, Canc. Lett. 480 (2020) 24-28
    F. M. Alakwaa, K. Chaudhary, L. X. Garmire, Deep learning accurately predicts estrogen receptor status in breast cancer metabolomics data, J. Proteome Res. 17 (2018) 337-347
    A. Orlenko, D. Kofink, L. P. Lyytikainen, et al., Model selection for metabolomics: predicting diagnosis of coronary artery disease using automated machine learning, Bioinformatics. 36 (2020) 1772-1778
    N. P. Long, D. K. Lim, C. Mo, et al., Development and assessment of a lysophospholipid-based deep learning model to discriminate geographical origins of white rice, Sci. Rep. 7 (2017) 8552
    M. Cuperlovic-Culf, Machine learning methods for analysis of metabolic data and metabolic pathway modeling, Metabolites. 8 (2018)
    R. Liu, Y. Peng, X. Li, et al., Identification of plasma metabolomic profiling for diagnosis of esophageal squamous-cell carcinoma using an UPLC/TOF/MS platform, Int. J. Mol. Sci. 14 (2013) 8899-8911
    D. Zhang, Y. Zheng, Z. Wang, et al., Comparison of the 7th and proposed 8th editions of the AJCC/UICC TNM staging system for esophageal squamous cell carcinoma underwent radical surgery, Eur. J. Surg. Oncol. 43 (2017) 1949-1955
    Q. Huang, Y. Tan, P. Yin, et al., Metabolic characterization of hepatocellular carcinoma using nontargeted tissue metabolomics, Canc. Res. 73 (2013) 4992-5002
    Z. Yang, Z. Song, Z. Chen, et al., Metabolic and lipidomic characterization of malignant pleural effusion in human lung cancer, J. Pharmaceut. Biomed. Anal. 180 (2020) 113069
    H. Zhang, L. Wang, Z. Hou, et al., Metabolomic profiling reveals potential biomarkers in esophageal cancer progression using liquid chromatography-mass spectrometry platform, Biochem. Biophys. Res. Commun. 491 (2017) 119-125
    J. Marrugo-Ramirez, M. Mir, J. Samitier, Blood-Based Cancer Biomarkers in Liquid Biopsy: A Promising Non-Invasive Alternative to Tissue Biopsy, Int J Mol Sci. 19 (2018)
    P. Puchalska, P. A. Crawford, Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics, Cell Metabol. 25 (2017) 262-284
    X. Chen, X. Chen, F. Liu, et al., Monocarboxylate transporter 1 is an independent prognostic factor in esophageal squamous cell carcinoma, Oncol. Rep. 41 (2019) 2529-2539
    A. M. Poff, C. Ari, P. Arnold, et al., Ketone supplementation decreases tumor cell viability and prolongs survival of mice with metastatic cancer, Int. J. Canc. 135 (2014) 1711-1720
    U. E. Martinez-Outschoorn, M. Prisco, A. Ertel, et al., Ketones and lactate increase cancer cell "stemness," driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics, Cell Cycle. 10 (2011) 1271-1286
    J. A. Menendez, R. Lupu, Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis, Nat. Rev. Canc. 7 (2007) 763-777
    J. J. Kamphorst, J. R. Cross, J. Fan, et al., Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids, Proc. Natl. Acad. Sci. U.S.A. 110 (2013) 8882-8887
    J. Bi, T. A. Ichu, C. Zanca, et al., Oncogene amplification in growth factor signaling pathways renders cancers dependent on membrane lipid remodeling, Cell Metabol. 30 (2019) 525-538 e528
    T. D. Hubbard, I. A. Murray, G. H. Perdew, Indole and tryptophan metabolism: endogenous and dietary routes to ah receptor activation, Drug Metab. Dispos. 43 (2015) 1522-1535
    H. Bernstein, C. Bernstein, C. M. Payne, et al., Bile acids as endogenous etiologic agents in gastrointestinal cancer, World J. Gastroenterol. 15 (2009) 3329-3340
    S. Ocvirk, S. J. O'Keefe, Influence of bile acids on colorectal cancer risk: potential mechanisms mediated by diet - gut microbiota interactions, Curr. Nutr. Rep. 6 (2017) 315-322
    T. Li, U. Apte, Bile acid metabolism and signaling in cholestasis, inflammation, and cancer, Adv. Pharmacol. 74 (2015) 263-302
    L. Liu, W. Dong, S. Wang, et al., Deoxycholic acid disrupts the intestinal mucosal barrier and promotes intestinal tumorigenesis, Food Funct. 9 (2018) 5588-5597
    H. Cao, S. Luo, M. Xu, et al., The secondary bile acid, deoxycholate accelerates intestinal adenoma-adenocarcinoma sequence in Apc (min/+) mice through enhancing Wnt signaling, Fam. Cancer 13 (2014) 563-571
    J. Liu, H. Zhou, Y. Zhang, et al., Docosapentaenoic acid and lung cancer risk: a Mendelian randomization study, Cancer Med. 8 (2019) 1817-1825
    C. W. H. Chan, B. M. H. Law, M. M. Y. Waye, et al., Trimethylamine-N-oxide as one hypothetical link for the relationship between intestinal microbiota and cancer - where we are and where shall we go?, J. Canc. 10 (2019) 5874-5882
    S. Bae, C. M. Ulrich, M. L. Neuhouser, et al., Plasma choline metabolites and colorectal cancer risk in the Women's Health Initiative Observational Study, Canc. Res. 74 (2014) 7442-7452
    K. A. Guertin, X. S. Li, B. I. Graubard, et al., Serum trimethylamine N-oxide, carnitine, choline, and betaine in relation to colorectal cancer risk in the alpha tocopherol, beta carotene cancer prevention study, Cancer Epidemiol. Biomark. Prev. 26 (2017) 945-952
  • Relative Articles

  • Cited by

    Periodical cited type(19)

    1. Tie, D., He, M., Li, W. et al. Advances in the application of network analysis methods in traditional Chinese medicine research. Phytomedicine, 2025, 136: 156256. doi:10.1016/j.phymed.2024.156256
    2. Tang, P., Li, B., Zhou, Z. et al. Integrated machine learning developed a prognosis-related gene signature to predict prognosis in oesophageal squamous cell carcinoma. Journal of Cellular and Molecular Medicine, 2024, 28(21): e70171. doi:10.1111/jcmm.70171
    3. Josyula, J.V.N., JeanPierre, A.R., Jorvekar, S.B. et al. Metabolomic profiling of dengue infection: unraveling molecular signatures by LC-MS/MS and machine learning models. Metabolomics, 2024, 20(5): 104. doi:10.1007/s11306-024-02169-0
    4. Sun, M., Liu, W., Jiang, H. et al. Large-scale, comprehensive plasma metabolomic analyses reveal potential biomarkers for the diagnosis of early-stage coronary atherosclerosis. Clinica Chimica Acta, 2024, 562: 119832. doi:10.1016/j.cca.2024.119832
    5. Liu, M., Tian, H., Wang, M. et al. Construction and validation of serum Metabolic Risk Score for early warning of malignancy in esophagus. iScience, 2024, 27(6): 109965. doi:10.1016/j.isci.2024.109965
    6. Liu, Z., Zhang, W., Wang, C. et al. Study on identification of diagnostic biomarkers in serum for papillary thyroid cancer in different iodine nutrition regions. Biomarkers, 2024. doi:10.1080/1354750X.2024.2445258
    7. Sun, Y., Cheng, G., Wei, D. et al. Integrating omics data and machine learning techniques for precision detection of oral squamous cell carcinoma: evaluating single biomarkers. Frontiers in Immunology, 2024, 15: 1493377. doi:10.3389/fimmu.2024.1493377
    8. Mukherjee, A., Abraham, S., Singh, A. et al. From Data to Cure: A Comprehensive Exploration of Multi-omics Data Analysis for Targeted Therapies. Molecular Biotechnology, 2024. doi:10.1007/s12033-024-01133-6
    9. Qiu, S., Cai, Y., Yao, H. et al. Small molecule metabolites: discovery of biomarkers and therapeutic targets. Signal Transduction and Targeted Therapy, 2023, 8(1): 132. doi:10.1038/s41392-023-01399-3
    10. Ngan, H.-L., Lam, K.-Y., Li, Z. et al. Machine learning facilitates the application of mass spectrometry-based metabolomics to clinical analysis: A review of early diagnosis of high mortality rate cancers. TrAC - Trends in Analytical Chemistry, 2023, 168: 117333. doi:10.1016/j.trac.2023.117333
    11. Wang, X., Zhang, J., Zheng, K. et al. Discovering metabolic vulnerability using spatially resolved metabolomics for antitumor small molecule-drug conjugates development as a precise cancer therapy strategy. Journal of Pharmaceutical Analysis, 2023, 13(7): 776-787. doi:10.1016/j.jpha.2023.02.010
    12. Di Paola, R., De, A., Izhar, R. et al. Possible Effects of Uremic Toxins p-Cresol, Indoxyl Sulfate, p-Cresyl Sulfate on the Development and Progression of Colon Cancer in Patients with Chronic Renal Failure. Genes, 2023, 14(6): 1257. doi:10.3390/genes14061257
    13. Zhu, J., Yang, C., Song, S. et al. Classification of multiple cancer types by combination of plasma-based near-infrared spectroscopy analysis and machine learning modeling. Analytical Biochemistry, 2023, 669: 115120. doi:10.1016/j.ab.2023.115120
    14. Xu, C.-X., Jiang, F., Shen, W.-T. Plasma markers for gastric cancer diagnosis: a metabolomics- and machine learning-based exploratory study | [基于代谢组学和机器学习探究胃癌血浆诊断标志物]. Chinese Journal of Public Health, 2023, 39(2): 164-169. doi:10.11847/zgggws1139011
    15. Shang, Q.-X., Kong, W.-L., Huang, W.-H. et al. Identification of m6a-related signature genes in esophageal squamous cell carcinoma by machine learning method. Frontiers in Genetics, 2023, 14: 1079795. doi:10.3389/fgene.2023.1079795
    16. Gao, Y., Liu, X., Pan, M. et al. Integrated untargeted fecal metabolomics and gut microbiota strategy for screening potential biomarkers associated with schizophrenia. Journal of Psychiatric Research, 2022, 156: 628-638. doi:10.1016/j.jpsychires.2022.10.072
    17. Yang, C., Zhou, S., Zhu, J. et al. Plasma lipid-based machine learning models provides a potential diagnostic tool for colorectal cancer patients. Clinica Chimica Acta, 2022, 536: 191-199. doi:10.1016/j.cca.2022.09.002
    18. Tu, J.-X., Lin, X.-T., Ye, H.-Q. et al. Global research trends of artificial intelligence applied in esophageal carcinoma: A bibliometric analysis (2000-2022) via CiteSpace and VOSviewer. Frontiers in Oncology, 2022, 12: 972357. doi:10.3389/fonc.2022.972357
    19. Zhao, M., Mi, D., Ferdows, B.E. et al. State-of-the-art nanotechnologies for the detection, recovery, analysis and elimination of liquid biopsy components in cancer. Nano Today, 2022, 42: 101361. doi:10.1016/j.nantod.2021.101361

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 32.1 %FULLTEXT: 32.1 %META: 65.2 %META: 65.2 %PDF: 2.8 %PDF: 2.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.5 %其他: 12.5 %China: 66.9 %China: 66.9 %Hong Kong, China: 1.0 %Hong Kong, China: 1.0 %India: 2.1 %India: 2.1 %Indonesia: 0.3 %Indonesia: 0.3 %United States: 17.1 %United States: 17.1 %其他ChinaHong Kong, ChinaIndiaIndonesiaUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (186) PDF downloads(9) Cited by(19)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return