Citation: | Zhongjian Chen, Xiancong Huang, Yun Gao, Su Zeng, Weimin Mao. Plasma-metabolite-based machine learning is a promising diagnostic approach for esophageal squamous cell carcinoma investigation[J]. Journal of Pharmaceutical Analysis, 2021, 11(4): 505-514. doi: 10.1016/j.jpha.2020.11.009 |
H. Liang, J. H. Fan, Y. L. Qiao, Epidemiology, etiology, and prevention of esophageal squamous cell carcinoma in China, Cancer Biol. Med. 14 (2017) 33-41
|
J. Cheng, H. Jin, X. Hou, et al., Disturbed tryptophan metabolism correlating to progression and metastasis of esophageal squamous cell carcinoma, Biochem. Biophys. Res. Commun. 486 (2017) 781-787
|
V. Tiasto, V. Mikhailova, V. Gulaia, et al., Esophageal cancer research today and tomorrow: lessons from algae and other perspectives, AIMS Genet. 5 (2018) 75-90
|
S. Ohashi, S. Miyamoto, O. Kikuchi, et al., Recent advances from basic and clinical studies of esophageal squamous cell carcinoma, Gastroenterology. 149 (2015) 1700-1715
|
J. B. Hulscher, J. W. van Sandick, A. G. de Boer, et al., Extended transthoracic resection compared with limited transhiatal resection for adenocarcinoma of the esophagus, N. Engl. J. Med. 347 (2002) 1662-1669
|
U. Testa, G. Castelli, E. Pelosi, Esophageal Cancer: Genomic and Molecular Characterization, Stem Cell Compartment and Clonal Evolution, Medicines (Basel). 4 (2017)
|
N. N. Pavlova, C. B. Thompson, The emerging hallmarks of cancer metabolism, Cell Metabol. 23 (2016) 27-47
|
J. Zheng, Energy metabolism of cancer: glycolysis versus oxidative phosphorylation (Review), Oncol. Lett. 4 (2012) 1151-1157
|
L. Vettore, R. L. Westbrook, D. A. Tennant, New aspects of amino acid metabolism in cancer, Br. J. Canc. 122 (2020) 150-156
|
X. Luo, C. Cheng, Z. Tan, et al., Emerging roles of lipid metabolism in cancer metastasis, Mol. Canc. 16 (2017) 76
|
C. Corbet, O. Feron, Emerging roles of lipid metabolism in cancer progression, Curr. Opin. Clin. Nutr. Metab. Care 20 (2017) 254-260
|
S. E. Weinberg, N. S. Chandel, Targeting mitochondria metabolism for cancer therapy, Nat. Chem. Biol. 11 (2015) 9-15
|
L. Wang, J. Chen, L. Chen, et al., 1H-NMR based metabonomic profiling of human esophageal cancer tissue, Mol. Canc. 12 (2013) 25
|
J. Xu, Y. Chen, R. Zhang, et al., Global metabolomics reveals potential urinary biomarkers of esophageal squamous cell carcinoma for diagnosis and staging, Sci. Rep. 6 (2016) 35010
|
S. A. Mir, P. Rajagopalan, A. P. Jain, et al., LC-MS-based serum metabolomic analysis reveals dysregulation of phosphatidylcholines in esophageal squamous cell carcinoma, J. Proteomics. 127 (2015) 96-102
|
H. Jin, F. Qiao, L. Chen, et al., Serum metabolomic signatures of lymph node metastasis of esophageal squamous cell carcinoma, J. Proteome Res. 13 (2014) 4091-4103
|
C. Sun, T. Li, X. Song, et al., Spatially resolved metabolomics to discover tumor-associated metabolic alterations, Proc. Natl. Acad. Sci. U.S.A. 116 (2019) 52-57
|
E. Le Rhun, J. Seoane, M. Salzet, et al., Liquid biopsies for diagnosing and monitoring primary tumors of the central nervous system, Canc. Lett. 480 (2020) 24-28
|
F. M. Alakwaa, K. Chaudhary, L. X. Garmire, Deep learning accurately predicts estrogen receptor status in breast cancer metabolomics data, J. Proteome Res. 17 (2018) 337-347
|
A. Orlenko, D. Kofink, L. P. Lyytikainen, et al., Model selection for metabolomics: predicting diagnosis of coronary artery disease using automated machine learning, Bioinformatics. 36 (2020) 1772-1778
|
N. P. Long, D. K. Lim, C. Mo, et al., Development and assessment of a lysophospholipid-based deep learning model to discriminate geographical origins of white rice, Sci. Rep. 7 (2017) 8552
|
M. Cuperlovic-Culf, Machine learning methods for analysis of metabolic data and metabolic pathway modeling, Metabolites. 8 (2018)
|
R. Liu, Y. Peng, X. Li, et al., Identification of plasma metabolomic profiling for diagnosis of esophageal squamous-cell carcinoma using an UPLC/TOF/MS platform, Int. J. Mol. Sci. 14 (2013) 8899-8911
|
D. Zhang, Y. Zheng, Z. Wang, et al., Comparison of the 7th and proposed 8th editions of the AJCC/UICC TNM staging system for esophageal squamous cell carcinoma underwent radical surgery, Eur. J. Surg. Oncol. 43 (2017) 1949-1955
|
Q. Huang, Y. Tan, P. Yin, et al., Metabolic characterization of hepatocellular carcinoma using nontargeted tissue metabolomics, Canc. Res. 73 (2013) 4992-5002
|
Z. Yang, Z. Song, Z. Chen, et al., Metabolic and lipidomic characterization of malignant pleural effusion in human lung cancer, J. Pharmaceut. Biomed. Anal. 180 (2020) 113069
|
H. Zhang, L. Wang, Z. Hou, et al., Metabolomic profiling reveals potential biomarkers in esophageal cancer progression using liquid chromatography-mass spectrometry platform, Biochem. Biophys. Res. Commun. 491 (2017) 119-125
|
J. Marrugo-Ramirez, M. Mir, J. Samitier, Blood-Based Cancer Biomarkers in Liquid Biopsy: A Promising Non-Invasive Alternative to Tissue Biopsy, Int J Mol Sci. 19 (2018)
|
P. Puchalska, P. A. Crawford, Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics, Cell Metabol. 25 (2017) 262-284
|
X. Chen, X. Chen, F. Liu, et al., Monocarboxylate transporter 1 is an independent prognostic factor in esophageal squamous cell carcinoma, Oncol. Rep. 41 (2019) 2529-2539
|
A. M. Poff, C. Ari, P. Arnold, et al., Ketone supplementation decreases tumor cell viability and prolongs survival of mice with metastatic cancer, Int. J. Canc. 135 (2014) 1711-1720
|
U. E. Martinez-Outschoorn, M. Prisco, A. Ertel, et al., Ketones and lactate increase cancer cell "stemness," driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics, Cell Cycle. 10 (2011) 1271-1286
|
J. A. Menendez, R. Lupu, Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis, Nat. Rev. Canc. 7 (2007) 763-777
|
J. J. Kamphorst, J. R. Cross, J. Fan, et al., Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids, Proc. Natl. Acad. Sci. U.S.A. 110 (2013) 8882-8887
|
J. Bi, T. A. Ichu, C. Zanca, et al., Oncogene amplification in growth factor signaling pathways renders cancers dependent on membrane lipid remodeling, Cell Metabol. 30 (2019) 525-538 e528
|
T. D. Hubbard, I. A. Murray, G. H. Perdew, Indole and tryptophan metabolism: endogenous and dietary routes to ah receptor activation, Drug Metab. Dispos. 43 (2015) 1522-1535
|
H. Bernstein, C. Bernstein, C. M. Payne, et al., Bile acids as endogenous etiologic agents in gastrointestinal cancer, World J. Gastroenterol. 15 (2009) 3329-3340
|
S. Ocvirk, S. J. O'Keefe, Influence of bile acids on colorectal cancer risk: potential mechanisms mediated by diet - gut microbiota interactions, Curr. Nutr. Rep. 6 (2017) 315-322
|
T. Li, U. Apte, Bile acid metabolism and signaling in cholestasis, inflammation, and cancer, Adv. Pharmacol. 74 (2015) 263-302
|
L. Liu, W. Dong, S. Wang, et al., Deoxycholic acid disrupts the intestinal mucosal barrier and promotes intestinal tumorigenesis, Food Funct. 9 (2018) 5588-5597
|
H. Cao, S. Luo, M. Xu, et al., The secondary bile acid, deoxycholate accelerates intestinal adenoma-adenocarcinoma sequence in Apc (min/+) mice through enhancing Wnt signaling, Fam. Cancer 13 (2014) 563-571
|
J. Liu, H. Zhou, Y. Zhang, et al., Docosapentaenoic acid and lung cancer risk: a Mendelian randomization study, Cancer Med. 8 (2019) 1817-1825
|
C. W. H. Chan, B. M. H. Law, M. M. Y. Waye, et al., Trimethylamine-N-oxide as one hypothetical link for the relationship between intestinal microbiota and cancer - where we are and where shall we go?, J. Canc. 10 (2019) 5874-5882
|
S. Bae, C. M. Ulrich, M. L. Neuhouser, et al., Plasma choline metabolites and colorectal cancer risk in the Women's Health Initiative Observational Study, Canc. Res. 74 (2014) 7442-7452
|
K. A. Guertin, X. S. Li, B. I. Graubard, et al., Serum trimethylamine N-oxide, carnitine, choline, and betaine in relation to colorectal cancer risk in the alpha tocopherol, beta carotene cancer prevention study, Cancer Epidemiol. Biomark. Prev. 26 (2017) 945-952
|
1. | Tie, D., He, M., Li, W. et al. Advances in the application of network analysis methods in traditional Chinese medicine research. Phytomedicine, 2025, 136: 156256. doi:10.1016/j.phymed.2024.156256 | |
2. | Tang, P., Li, B., Zhou, Z. et al. Integrated machine learning developed a prognosis-related gene signature to predict prognosis in oesophageal squamous cell carcinoma. Journal of Cellular and Molecular Medicine, 2024, 28(21): e70171. doi:10.1111/jcmm.70171 | |
3. | Josyula, J.V.N., JeanPierre, A.R., Jorvekar, S.B. et al. Metabolomic profiling of dengue infection: unraveling molecular signatures by LC-MS/MS and machine learning models. Metabolomics, 2024, 20(5): 104. doi:10.1007/s11306-024-02169-0 | |
4. | Sun, M., Liu, W., Jiang, H. et al. Large-scale, comprehensive plasma metabolomic analyses reveal potential biomarkers for the diagnosis of early-stage coronary atherosclerosis. Clinica Chimica Acta, 2024, 562: 119832. doi:10.1016/j.cca.2024.119832 | |
5. | Liu, M., Tian, H., Wang, M. et al. Construction and validation of serum Metabolic Risk Score for early warning of malignancy in esophagus. iScience, 2024, 27(6): 109965. doi:10.1016/j.isci.2024.109965 | |
6. | Liu, Z., Zhang, W., Wang, C. et al. Study on identification of diagnostic biomarkers in serum for papillary thyroid cancer in different iodine nutrition regions. Biomarkers, 2024. doi:10.1080/1354750X.2024.2445258 | |
7. | Sun, Y., Cheng, G., Wei, D. et al. Integrating omics data and machine learning techniques for precision detection of oral squamous cell carcinoma: evaluating single biomarkers. Frontiers in Immunology, 2024, 15: 1493377. doi:10.3389/fimmu.2024.1493377 | |
8. | Mukherjee, A., Abraham, S., Singh, A. et al. From Data to Cure: A Comprehensive Exploration of Multi-omics Data Analysis for Targeted Therapies. Molecular Biotechnology, 2024. doi:10.1007/s12033-024-01133-6 | |
9. | Qiu, S., Cai, Y., Yao, H. et al. Small molecule metabolites: discovery of biomarkers and therapeutic targets. Signal Transduction and Targeted Therapy, 2023, 8(1): 132. doi:10.1038/s41392-023-01399-3 | |
10. | Ngan, H.-L., Lam, K.-Y., Li, Z. et al. Machine learning facilitates the application of mass spectrometry-based metabolomics to clinical analysis: A review of early diagnosis of high mortality rate cancers. TrAC - Trends in Analytical Chemistry, 2023, 168: 117333. doi:10.1016/j.trac.2023.117333 | |
11. | Wang, X., Zhang, J., Zheng, K. et al. Discovering metabolic vulnerability using spatially resolved metabolomics for antitumor small molecule-drug conjugates development as a precise cancer therapy strategy. Journal of Pharmaceutical Analysis, 2023, 13(7): 776-787. doi:10.1016/j.jpha.2023.02.010 | |
12. | Di Paola, R., De, A., Izhar, R. et al. Possible Effects of Uremic Toxins p-Cresol, Indoxyl Sulfate, p-Cresyl Sulfate on the Development and Progression of Colon Cancer in Patients with Chronic Renal Failure. Genes, 2023, 14(6): 1257. doi:10.3390/genes14061257 | |
13. | Zhu, J., Yang, C., Song, S. et al. Classification of multiple cancer types by combination of plasma-based near-infrared spectroscopy analysis and machine learning modeling. Analytical Biochemistry, 2023, 669: 115120. doi:10.1016/j.ab.2023.115120 | |
14. | Xu, C.-X., Jiang, F., Shen, W.-T. Plasma markers for gastric cancer diagnosis: a metabolomics- and machine learning-based exploratory study | [基于代谢组学和机器学习探究胃癌血浆诊断标志物]. Chinese Journal of Public Health, 2023, 39(2): 164-169. doi:10.11847/zgggws1139011 | |
15. | Shang, Q.-X., Kong, W.-L., Huang, W.-H. et al. Identification of m6a-related signature genes in esophageal squamous cell carcinoma by machine learning method. Frontiers in Genetics, 2023, 14: 1079795. doi:10.3389/fgene.2023.1079795 | |
16. | Gao, Y., Liu, X., Pan, M. et al. Integrated untargeted fecal metabolomics and gut microbiota strategy for screening potential biomarkers associated with schizophrenia. Journal of Psychiatric Research, 2022, 156: 628-638. doi:10.1016/j.jpsychires.2022.10.072 | |
17. | Yang, C., Zhou, S., Zhu, J. et al. Plasma lipid-based machine learning models provides a potential diagnostic tool for colorectal cancer patients. Clinica Chimica Acta, 2022, 536: 191-199. doi:10.1016/j.cca.2022.09.002 | |
18. | Tu, J.-X., Lin, X.-T., Ye, H.-Q. et al. Global research trends of artificial intelligence applied in esophageal carcinoma: A bibliometric analysis (2000-2022) via CiteSpace and VOSviewer. Frontiers in Oncology, 2022, 12: 972357. doi:10.3389/fonc.2022.972357 | |
19. | Zhao, M., Mi, D., Ferdows, B.E. et al. State-of-the-art nanotechnologies for the detection, recovery, analysis and elimination of liquid biopsy components in cancer. Nano Today, 2022, 42: 101361. doi:10.1016/j.nantod.2021.101361 |