Citation: | Zhongjian Chen, Xiancong Huang, Yun Gao, Su Zeng, Weimin Mao. Plasma-metabolite-based machine learning is a promising diagnostic approach for esophageal squamous cell carcinoma investigation[J]. Journal of Pharmaceutical Analysis, 2021, 11(4): 505-514. doi: 10.1016/j.jpha.2020.11.009 |
H. Liang, J. H. Fan, Y. L. Qiao, Epidemiology, etiology, and prevention of esophageal squamous cell carcinoma in China, Cancer Biol. Med. 14 (2017) 33-41
|
J. Cheng, H. Jin, X. Hou, et al., Disturbed tryptophan metabolism correlating to progression and metastasis of esophageal squamous cell carcinoma, Biochem. Biophys. Res. Commun. 486 (2017) 781-787
|
V. Tiasto, V. Mikhailova, V. Gulaia, et al., Esophageal cancer research today and tomorrow: lessons from algae and other perspectives, AIMS Genet. 5 (2018) 75-90
|
S. Ohashi, S. Miyamoto, O. Kikuchi, et al., Recent advances from basic and clinical studies of esophageal squamous cell carcinoma, Gastroenterology. 149 (2015) 1700-1715
|
J. B. Hulscher, J. W. van Sandick, A. G. de Boer, et al., Extended transthoracic resection compared with limited transhiatal resection for adenocarcinoma of the esophagus, N. Engl. J. Med. 347 (2002) 1662-1669
|
U. Testa, G. Castelli, E. Pelosi, Esophageal Cancer: Genomic and Molecular Characterization, Stem Cell Compartment and Clonal Evolution, Medicines (Basel). 4 (2017)
|
N. N. Pavlova, C. B. Thompson, The emerging hallmarks of cancer metabolism, Cell Metabol. 23 (2016) 27-47
|
J. Zheng, Energy metabolism of cancer: glycolysis versus oxidative phosphorylation (Review), Oncol. Lett. 4 (2012) 1151-1157
|
L. Vettore, R. L. Westbrook, D. A. Tennant, New aspects of amino acid metabolism in cancer, Br. J. Canc. 122 (2020) 150-156
|
X. Luo, C. Cheng, Z. Tan, et al., Emerging roles of lipid metabolism in cancer metastasis, Mol. Canc. 16 (2017) 76
|
C. Corbet, O. Feron, Emerging roles of lipid metabolism in cancer progression, Curr. Opin. Clin. Nutr. Metab. Care 20 (2017) 254-260
|
S. E. Weinberg, N. S. Chandel, Targeting mitochondria metabolism for cancer therapy, Nat. Chem. Biol. 11 (2015) 9-15
|
L. Wang, J. Chen, L. Chen, et al., 1H-NMR based metabonomic profiling of human esophageal cancer tissue, Mol. Canc. 12 (2013) 25
|
J. Xu, Y. Chen, R. Zhang, et al., Global metabolomics reveals potential urinary biomarkers of esophageal squamous cell carcinoma for diagnosis and staging, Sci. Rep. 6 (2016) 35010
|
S. A. Mir, P. Rajagopalan, A. P. Jain, et al., LC-MS-based serum metabolomic analysis reveals dysregulation of phosphatidylcholines in esophageal squamous cell carcinoma, J. Proteomics. 127 (2015) 96-102
|
H. Jin, F. Qiao, L. Chen, et al., Serum metabolomic signatures of lymph node metastasis of esophageal squamous cell carcinoma, J. Proteome Res. 13 (2014) 4091-4103
|
C. Sun, T. Li, X. Song, et al., Spatially resolved metabolomics to discover tumor-associated metabolic alterations, Proc. Natl. Acad. Sci. U.S.A. 116 (2019) 52-57
|
E. Le Rhun, J. Seoane, M. Salzet, et al., Liquid biopsies for diagnosing and monitoring primary tumors of the central nervous system, Canc. Lett. 480 (2020) 24-28
|
F. M. Alakwaa, K. Chaudhary, L. X. Garmire, Deep learning accurately predicts estrogen receptor status in breast cancer metabolomics data, J. Proteome Res. 17 (2018) 337-347
|
A. Orlenko, D. Kofink, L. P. Lyytikainen, et al., Model selection for metabolomics: predicting diagnosis of coronary artery disease using automated machine learning, Bioinformatics. 36 (2020) 1772-1778
|
N. P. Long, D. K. Lim, C. Mo, et al., Development and assessment of a lysophospholipid-based deep learning model to discriminate geographical origins of white rice, Sci. Rep. 7 (2017) 8552
|
M. Cuperlovic-Culf, Machine learning methods for analysis of metabolic data and metabolic pathway modeling, Metabolites. 8 (2018)
|
R. Liu, Y. Peng, X. Li, et al., Identification of plasma metabolomic profiling for diagnosis of esophageal squamous-cell carcinoma using an UPLC/TOF/MS platform, Int. J. Mol. Sci. 14 (2013) 8899-8911
|
D. Zhang, Y. Zheng, Z. Wang, et al., Comparison of the 7th and proposed 8th editions of the AJCC/UICC TNM staging system for esophageal squamous cell carcinoma underwent radical surgery, Eur. J. Surg. Oncol. 43 (2017) 1949-1955
|
Q. Huang, Y. Tan, P. Yin, et al., Metabolic characterization of hepatocellular carcinoma using nontargeted tissue metabolomics, Canc. Res. 73 (2013) 4992-5002
|
Z. Yang, Z. Song, Z. Chen, et al., Metabolic and lipidomic characterization of malignant pleural effusion in human lung cancer, J. Pharmaceut. Biomed. Anal. 180 (2020) 113069
|
H. Zhang, L. Wang, Z. Hou, et al., Metabolomic profiling reveals potential biomarkers in esophageal cancer progression using liquid chromatography-mass spectrometry platform, Biochem. Biophys. Res. Commun. 491 (2017) 119-125
|
J. Marrugo-Ramirez, M. Mir, J. Samitier, Blood-Based Cancer Biomarkers in Liquid Biopsy: A Promising Non-Invasive Alternative to Tissue Biopsy, Int J Mol Sci. 19 (2018)
|
P. Puchalska, P. A. Crawford, Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics, Cell Metabol. 25 (2017) 262-284
|
X. Chen, X. Chen, F. Liu, et al., Monocarboxylate transporter 1 is an independent prognostic factor in esophageal squamous cell carcinoma, Oncol. Rep. 41 (2019) 2529-2539
|
A. M. Poff, C. Ari, P. Arnold, et al., Ketone supplementation decreases tumor cell viability and prolongs survival of mice with metastatic cancer, Int. J. Canc. 135 (2014) 1711-1720
|
U. E. Martinez-Outschoorn, M. Prisco, A. Ertel, et al., Ketones and lactate increase cancer cell "stemness," driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics, Cell Cycle. 10 (2011) 1271-1286
|
J. A. Menendez, R. Lupu, Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis, Nat. Rev. Canc. 7 (2007) 763-777
|
J. J. Kamphorst, J. R. Cross, J. Fan, et al., Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids, Proc. Natl. Acad. Sci. U.S.A. 110 (2013) 8882-8887
|
J. Bi, T. A. Ichu, C. Zanca, et al., Oncogene amplification in growth factor signaling pathways renders cancers dependent on membrane lipid remodeling, Cell Metabol. 30 (2019) 525-538 e528
|
T. D. Hubbard, I. A. Murray, G. H. Perdew, Indole and tryptophan metabolism: endogenous and dietary routes to ah receptor activation, Drug Metab. Dispos. 43 (2015) 1522-1535
|
H. Bernstein, C. Bernstein, C. M. Payne, et al., Bile acids as endogenous etiologic agents in gastrointestinal cancer, World J. Gastroenterol. 15 (2009) 3329-3340
|
S. Ocvirk, S. J. O'Keefe, Influence of bile acids on colorectal cancer risk: potential mechanisms mediated by diet - gut microbiota interactions, Curr. Nutr. Rep. 6 (2017) 315-322
|
T. Li, U. Apte, Bile acid metabolism and signaling in cholestasis, inflammation, and cancer, Adv. Pharmacol. 74 (2015) 263-302
|
L. Liu, W. Dong, S. Wang, et al., Deoxycholic acid disrupts the intestinal mucosal barrier and promotes intestinal tumorigenesis, Food Funct. 9 (2018) 5588-5597
|
H. Cao, S. Luo, M. Xu, et al., The secondary bile acid, deoxycholate accelerates intestinal adenoma-adenocarcinoma sequence in Apc (min/+) mice through enhancing Wnt signaling, Fam. Cancer 13 (2014) 563-571
|
J. Liu, H. Zhou, Y. Zhang, et al., Docosapentaenoic acid and lung cancer risk: a Mendelian randomization study, Cancer Med. 8 (2019) 1817-1825
|
C. W. H. Chan, B. M. H. Law, M. M. Y. Waye, et al., Trimethylamine-N-oxide as one hypothetical link for the relationship between intestinal microbiota and cancer - where we are and where shall we go?, J. Canc. 10 (2019) 5874-5882
|
S. Bae, C. M. Ulrich, M. L. Neuhouser, et al., Plasma choline metabolites and colorectal cancer risk in the Women's Health Initiative Observational Study, Canc. Res. 74 (2014) 7442-7452
|
K. A. Guertin, X. S. Li, B. I. Graubard, et al., Serum trimethylamine N-oxide, carnitine, choline, and betaine in relation to colorectal cancer risk in the alpha tocopherol, beta carotene cancer prevention study, Cancer Epidemiol. Biomark. Prev. 26 (2017) 945-952
|