Citation: | Xinling Cui, Wei Mi, Zhishang Hu, Xiaoyu Li, Bo Meng, Xinyuan Zhao, Xiaohong Qian, Tao Zhu, Wantao Ying. Global characterization of modifications to the charge isomers of IgG antibody[J]. Journal of Pharmaceutical Analysis, 2022, 12(1): 156-163. doi: 10.1016/j.jpha.2020.11.006 |
F. Torkashvand, B. Vaziri, Main quality attributes of monoclonal antibodies and effect of cell culture components. Iran. Biomed. J. 21(2017)131-141
|
D. Reusch, M. Haberger, B. Maier, et al., Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles--part 1:separation-based methods. mAbs. 7(2015)167-179
|
M. K. Parr, O. Montacir, H. Montacir, Physicochemical characterization of biopharmaceuticals, J. Pharmaceut. Biomed. Anal. 130(2016)366-389
|
Y. Leblanc, C. Ramon, N. Bihoreau, et al., Charge variants characterization of a monoclonal antibody by ion exchange chromatography coupled on-line to native mass spectrometry:case study after a long-term storage at +5 degrees C. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1048(2017)130-139
|
S. A. Berkowitz, J. R. Engen, J. R. Mazzeo, et al., Analytical tools for characterizing biopharmaceuticals and the implications for biosimilars. Nat. Rev. Drug Discov. 11(2012)527-540
|
R. J. Harris, B. Kabakoff, F. D. Macchi, et al., Identification of multiple sources of charge heterogeneity in a recombinant antibody. J. Chromatogr. B Biomed. Sci. Appl. 752(2001)233-245
|
L. A. Khawli, S. Goswami, R. Hutchinson, et al., Charge variants in IgG1:isolation, characterization, in vitro binding properties and pharmacokinetics in rats. mAbs. 2(2010)613-624
|
H. Liu, G. Gaza-Bulseco, D. Faldu, et al., Heterogeneity of monoclonal antibodies. J. Pharm. Sci. 97(2008)2426-2447
|
Y. Du, A. Walsh, R. Ehrick, et al., Chromatographic analysis of the acidic and basic species of recombinant monoclonal antibodies. mAbs. 4(2012)578-585
|
S. Fekete, A. Beck, D. Guillarme, Characterization of cation exchanger stationary phases applied for the separations of therapeutic monoclonal antibodies. J. Pharmaceut. Biomed. Anal. 111(2015)169-176
|
K. Takeo, T. Tanaka, K. Nakamura, et al., Studies on the heterogeneity of anti-hapten antibodies by means of two-dimensional affinity electrophoresis. Electrophoresis. 10(1989)818-824
|
S. Fekete, A. Beck, J. L. Veuthey, et al., Ion-exchange chromatography for the characterization of biopharmaceuticals. J. Pharmaceut. Biomed. Anal. 113(2015)43-55
|
N. Lingg, M. Berndtsson, B. Hintersteiner, et al., Highly linear pH gradients for analyzing monoclonal antibody charge heterogeneity in the alkaline range:validation of the method parameters. J. Chromatogr., A 1373(2014)124-130
|
S. Fekete, A. Beck, J. Fekete, et al., Method development for the separation of monoclonal antibody charge variants in cation exchange chromatography, Part I:salt gradient approach. J. Pharmaceut. Biomed. Anal. 102(2015)33-44
|
S. Fekete, A. Beck, J. Fekete, et al., Method development for the separation of monoclonal antibody charge variants in cation exchange chromatography, Part II:pH gradient approach. J. Pharmaceut. Biomed. Anal. 102(2015)282-289
|
F. Fussl, K. Cook, K. Scheffler, et al., Charge variant analysis of monoclonal antibodies using direct coupled pH gradient cation exchange chromatography to high-resolution native mass spectrometry. Anal. Chem. 90(2018)4669-4676
|
F. Fussl, Trappe A., Comprehensive characterisation of the heterogeneity of adalimumab via charge variant analysis hyphenated on-line to native high resolution Orbitrap mass spectrometry. mAbs. 11(2019)116-128
|
A. Goyon, M. Excoffier, M. C. Janin-Bussat, et al., Determination of isoelectric points and relative charge variants of 23 therapeutic monoclonal antibodies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1065-1066(2017)119-128
|
A. Hirayama, H. Abe, N. Yamaguchi, et al., Development of a sheathless CE-ESI-MS interface. Electrophoresis. 39(2018)1382-1389
|
N. A. Kulak, G. Pichler, I. Paron, et al., Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat. Methods 11(2014)319-324
|
A. Makarov, E. Denisov, Dynamics of ions of intact proteins in the Orbitrap mass analyzer. J. Am. Soc. Mass Spectrom. 20(2009)1486-1495
|
M. W. Senko, S. C. Beu, F. W. McLaffertycor, Determination of monoisotopic masses and ion populations for large biomolecules from resolved isotopic distributions. J. Am. Soc. Mass Spectrom. 6(1995)229-233
|
D. Chelius, D. S. Rehder, P. V. Bondarenko, Identification and characterization of deamidation sites in the conserved regions of human immunoglobulin gamma antibodies. Anal. Chem. 77(2005)6004-6011
|
I. Sokolowska, J. Mo, J. Dong, et al., Subunit mass analysis for monitoring antibody oxidation. mAbs. 9(2017)498-505
|
R. Jefferis, Glyco-engineering of human IgG-fc to modulate biologic activities. Curr. Pharmaceut. Biotechnol. 17(2016)1333-1347
|
Y. Gavrilov, D. Shental-Bechor, H. M. Greenblatt, et al., Glycosylation may reduce protein thermodynamic stability by inducing a conformational distortion. J. Phys. Chem. Lett. 6(2015)3572-3577
|
Y. Lyubarskaya, D. Houde, J. Woodard, et al., Analysis of recombinant monoclonal antibody isoforms by electrospray ionization mass spectrometry as a strategy for streamlining characterization of recombinant monoclonal antibody charge heterogeneity. Anal. Biochem. 348(2006)24-39
|
J. Vlasak, M. C. Bussat, S. Wang, et al., Identification and characterization of asparagine deamidation in the light chain CDR1 of a humanized IgG1 antibody. Anal. Biochem. 392(2009)145-154
|
H. Chi, C. Liu, H. Yang, et al., Comprehensive identification of peptides in tandem mass spectra using an efficient open search engine. Nat. Biotechnol. 10(2018)1038
|
H. Chi, K. He, B. Yang, et al., pFind-Alioth:A novel unrestricted database search algorithm to improve the interpretation of high-resolution MS/MS data. J. Proteomics. 125(2015)89-97
|
S. Tyanova, T. Temu, J. Cox, The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11(2016)2301-2319
|
V. Timm, P. Gruber, M. Wasiliu, et al., Identification and characterization of oxidation and deamidation sites in monoclonal rat/mouse hybrid antibodies. J. Chromatog.r B Analyt. Technol. Biomed. Life Sci. 878(2010)777-784
|
L. Y. Lee, E. S. Moh, B. L. Parker, et al., Toward automated N-glycopeptide identification in glycoproteomics. J. Proteome Res. 15(2016)3904-3915
|
M. Bern, Y. J. Kil, C. Becker, Byonic:advanced peptide and protein identification software. Curr. Protoc. Bioinformatics. 13(2012)13-20
|
N. M. Riley, A. S. Hebert, M. S. Westphall, et al., Capturing site-specific heterogeneity with large-scale N-glycoproteome analysis. Nat. Commun. 10(2019)1311
|
P. H. Jensen, S. Mysling, P. Hojrup, et al., Glycopeptide enrichment for MALDI-TOF mass spectrometry analysis by hydrophilic interaction liquid chromatography solid phase extraction (HILIC SPE). Methods Mol. Biol. 951(2013)131-144
|
Q. Dong, X. Yan, Y. Liang, et al., In-depth characterization and spectral library building of glycopeptides in the tryptic digest of a monoclonal antibody using 1D and 2D LC-MS/MS. J. Proteome Res. 15(2016)1472-1486
|