Volume 11 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
Sara Meirinho, Márcio Rodrigues, Ana Fortuna, Amílcar Falcão, Gilberto Alves. Liquid chromatographic methods for determination of the new antiepileptic drugs stiripentol, retigabine, rufinamide and perampanel: A comprehensive and critical review[J]. Journal of Pharmaceutical Analysis, 2021, 11(4): 405-421. doi: 10.1016/j.jpha.2020.11.005
Citation: Sara Meirinho, Márcio Rodrigues, Ana Fortuna, Amílcar Falcão, Gilberto Alves. Liquid chromatographic methods for determination of the new antiepileptic drugs stiripentol, retigabine, rufinamide and perampanel: A comprehensive and critical review[J]. Journal of Pharmaceutical Analysis, 2021, 11(4): 405-421. doi: 10.1016/j.jpha.2020.11.005

Liquid chromatographic methods for determination of the new antiepileptic drugs stiripentol, retigabine, rufinamide and perampanel: A comprehensive and critical review

doi: 10.1016/j.jpha.2020.11.005
Funds:

This work was supported by Banco Santander/Totta (Portugal) through the fellowship BID/ICI-FCS/CICS/Santander Universidades-UBI/2017, by Foundation for Science and Technology (FCT) through the fellowship SFRH/BD/136028/2018 and by FEDER funds through the POCI - COMPETE 2020 - Operational Program Competitiveness and Internationalization in Axis I (Project No. POCI-01-0145-FEDER-007491) and National Funds by FCT (Project No. UIDB/00709/2020

and Project No. UIDP/00709/2020). The authors also would like to thank the support provided by FEDER funds through the “Programa Operacional do Centro” (Project No. CENTRO-01-0145-FEDER-000013).

  • Received Date: Feb. 27, 2020
  • Accepted Date: Nov. 17, 2020
  • Rev Recd Date: Oct. 26, 2020
  • Available Online: Jan. 24, 2022
  • Publish Date: Aug. 15, 2021
  • The new antiepileptic drugs perampanel, retigabine, rufinamide and stiripentol have been recently approved for different epilepsy types. Being them an innovation in the antiepileptics armamentarium, a lot of investigations regarding their pharmacological properties are yet to be performed. Besides, considering their broad anticonvulsant activities, an extension of their therapeutic indications may be worthy of investigation, especially regarding other seizure types as well as other central nervous system disorders. Although different liquid chromatographic (LC) methods coupled with ultraviolet, fluorescence, mass or tandem-mass spectrometry detection have already been developed for the determination of perampanel, retigabine, rufinamide and stiripentol, new and more cost-effective methods are yet required. Therefore, this review summarizes the main analytical aspects regarding the liquid chromatographic methods developed for the analysis of perampanel, retigabine (and its main active metabolite), rufinamide and stiripentol in biological samples and pharmaceutical dosage forms. Furthermore, the physicochemical and stability properties of the target compounds will also be addressed. Thus, this review gathers, for the first time, important background information on LC methods that have been developed and applied for the determination of perampanel, retigabine, rufinamide and stiripentol, which should be considered as a starting point if new (bio)analytical techniques are aimed to be implemented for these drugs.
  • loading
  • E. Ben-Menachem, Medical management of refractory epilepsy-Practical treatment with novel antiepileptic drugs, Epilepsia. 55 (2014) 3-8
    S.S. Chung, K. Kelly, C. Schusse, New and Emerging Treatments for Epilepsy: Review of Clinical Studies of Lacosamide, Eslicarbazepine Acetate, Ezogabine, Rufinamide, Perampanel, and Electrical Stimulation Therapy., J. Epilepsy Res. 1 (2011) 35-46
    E. Burakgazi, J.A. French, Seminar in Epileptology Treatment of epilepsy in adults, Epileptic Disord. 18 (2016) 228-239
    S. De Biase, G.L. Gigli, A. Nilo, et al., Pharmacokinetic and pharmacodynamic considerations for the clinical efficacy of perampanel in focal onset seizures, Expert Opin. Drug Metab. Toxicol. 15 (2018) 93-102
    P. LaPenna, L.M. Tormoehlen, The Pharmacology and Toxicology of Third-Generation Anticonvulsant Drugs, J. Med. Toxicol. 13 (2017) 329-342
    M. Shaju, S. Abraham, Innovations in epilepsy management - An overview, J. Pharm. Pharm. Sci. 16 (2013) 564-576
    M.D. Krasowski, G.A. McMillin, Advances in anti-epileptic drug testing, Clin. Chim. Acta. 436 (2014) 224-236
    L. Santulli, A. Coppola, S. Balestrini, et al., The challenges of treating epilepsy with 25 antiepileptic drugs, Pharmacol. Res. 107 (2016) 211-219
    L.G.M. van Rooij, M.P.H. van den Broek, C.M.A. Rademaker, et al. , Clinical management of seizures in newborns: Diagnosis and treatment, Pediatr. Drugs. 15 (2013) 9-18
    S. Stefanovic, S.M. Jankovic, M. Novakovic, et al., Pharmacodynamics and common drug-drug interactions of the third-generation antiepileptic drugs, Expert Opin. Drug Metab. Toxicol. 14 (2018) 153-159
    M. V. Spanaki, G.L. Barkley, An overview of third-generation antiseizure drugs: Clobazam, lacosamide, rufinamide, and vigabatrin, Neurol. Clin. Pract. 2 (2012) 236-241
    M. Mula, Third generation antiepileptic drug monotherapies in adults with epilepsy, Expert Rev. Neurother. 16 (2016) 1087-1092
    J.W. Wheless, B. Vazquez, Rufinamide: a novel braod-spectrum antiepileptic drug, Epilepsy Curr. 10 (2010) 1-6
    A.G.B. Thompson, H.R. Cock, Successful treatment of super-refractory tonic status epilepticus with rufinamide: First clinical report, Seizure. 39 (2016) 1-4
    P. Striano, R. McMurray, E. Santamarina, et al., Rufinamide for the treatment of Lennox-Gastaut syndrome: evidence from clinical trials and clinical practice, Epileptic Disord. 20 (2018) 13-29
    C. Chiron, B. De Toffol, M. Helias, et al., Do children with Dravet syndrome continue to benefit from stiripentol for long through adulthood?, (2018) 1-13
    C. Chiron, Stiripentol for the treatment of seizures associated with Dravet syndrome, Expert Rev. Neurother. 19 (2019) 301-310
    S. Jacob, A.B. Nair, An Updated Overview on Therapeutic Drug Monitoring of Recent Antiepileptic Drugs, Drugs R D. 16 (2016) 303-316
    K.C. Nickels, E.C. Wirrell, Stiripentol in the Management of Epilepsy, CNS Drugs. 31 (2017) 405-416
    European Medicines Agency, Stiripentol (Diacomit). Summary of product characteristics. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000664/WC500036518.pdf (accessed 5 October 2020)
    E.P. Yildiz, M.U. Ozkan, T.A. Uzunhan, Efficacy of Stiripentol and the Clinical Outcome in Dravet Syndrome, J. Child Neurol. (2018). doi: 10.1177/0883073818811538
    C.M. Amabile, A. Vasudevan, Ezogabine: a Novel Antieplieptic for Adjunctive Treatment of partial-onset seizures, Pharmacotherapy. 33 (2013) 187-194
    European Medicines Agency, Retigabine (Trobalt). Summary of product characteristics. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/001245/WC500104835.pdf (accessed 5 October 2020)
    O. Takenaka, J. Ferry, K. Saeki, et al., Pharmacokinetic/pharmacodynamic analysis of adjunctive perampanel in subjects with partial-onset seizures, Acta Neurol. Scand. 137 (2017) 400-408
    P.N. Patsalos, E.P. Spencer, D.J. Berry, Therapeutic Drug Monitoring of Antiepileptic Drugs in Epilepsy: A 2018 Update, Ther. Drug Monit. 40 (2018) 526-548
    L.A. Rudzinski, N.J. Velez-Ruiz, E.R. Gedzelman, et al., New antiepileptic drugs: focus on ezogabine, clobazam, and perampanel, J. Investig. Med. 64 (2016) 1087-1101
    A. Gil-Nagel, S. Burd, M. Toledo, et al., A retrospective, multicentre study of perampanel given as monotherapy in routine clinical care in people with epilepsy, Seizure. 54 (2018) 61-66
    T. Tomson, S.I. Johannessen, Therapeutic monitoring of the new antiepileptic drugs, Eur. J. Clin. Pharmacol. 55 (2000) 697-705
    D. Milosheska, I. Grabnar, T. Vovk, Dried blood spots for monitoring and individualization of antiepileptic drug treatment, Eur. J. Pharm. Sci. 75 (2015) 25-39
    P.N. Patsalos, D.J. Berry, B.F.D. Bourgeois, et. al., Antiepileptic drugs - Best practice guidelines for therapeutic drug monitoring: A position paper by the subcommission on therapeutic drug monitoring, ILAE Commission on Therapeutic Strategies, Epilepsia. 49 (2008) 1239-1276
    S.I. Johannessen, T. Tomson, Pharmacokinetic Variability of Newer Antiepileptic Drugs. When is Monitoring Needed?, Clin. Pharmacokinet. 45 (2006) 1061-1075
    P.N. Patsalos, M. Zugman, C. Lake, et al., Serum protein binding of 25 antiepileptic drugs in a routine clinical setting: A comparison of free non-protein-bound concentrations, Epilepsia. 58 (2017) 1234-1243
    A. Reimers, J.A. Berg, Reference ranges for antiepileptic drugs revisited: A practical approach to establish national guidelines, Drug Des. Devel. Ther. 12 (2018) 271-280
    A. Verrotti, G. Prezioso, S. Stagi, et al., Pharmacological considerations in the use of stiripentol for the treatment of epilepsy., Expert Opin. Drug Metab. Toxicol. 12 (2016) 345-352
    G. Orhan, T. V Wuttke, A.T. Nies, et al. , Retigabine/Ezogabine, a KCNQ/KV7 channel opener: pharmacological and clinical data, Expert Opin. Pharmacother. 13 (2012) 1807-1816
    European Medicines Agency, Rufinamide (Inovelon). Summary of product characteristics. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000660/WC500032937.pdf (accessed 5 October 2020)
    Food and Drug Administration, Perampanel (Fycompa) Clinical Pharmacology and Biopharmaceutics Reviews. https://www.fda.gov/media/84995/download (accessed 5 October 2020)
    P.N. Patsalos, The clinical pharmacology profile of the new antiepileptic drug perampanel: A novel noncompetitive AMPA receptor antagonist, Epilepsia. 56 (2015) 12-27
    European Medicines Agency, Perampanel (Fycompa). Summary of product characteristics. https://www.ema.europa.eu/documents/product-information/fycompa-epar-product-information_en.pdf (accessed 5 October 2020)
    E. Perucca, J. Cloyd, D. Critchley, et. al., Rufinamide: Clinical pharmacokinetics and concentration-response relationships in patients with epilepsy, Epilepsia. 49 (2008)
    H.W. Darwish, A.S. Abdelhameed, M.I. Attia, et al., A stability-indicating HPLC-DAD method for determination of stiripentol: Development, validation, kinetics, structure elucidation and application to commercial dosage form, J. Anal. Methods Chem. 2014 (2014). doi: 10.1155/2014/638951
    S. Peigne, S. Chhun, M. Tod, et al., Population Pharmacokinetics of Stiripentol in Paediatric Patients with Dravet Syndrome Treated with Stiripentol, Valproate and Clobazam Combination Therapy, Clin. Pharmacokinet. (2017) 1-10
    T.W. May, R. Boor, T. Mayer, et al., Concentrations of Stiripentol in Children and Adults With Epilepsy, Ther. Drug Monit. 34 (2012) 390-397
    H. Lin, R. Levy, Pharmacokinetic Profile of a New Anticonvulsant, Stiripentol, in the Rhesus Monkey Huey-shin, Epilepsia. 24 (1983) 692-702
    R.H. Levy, H.S. Lin, H.M. Blehaut, et al., Pharmacokinetics of Stiripentol in Normal Man: Evidence of Nonlinearity, J. Clin. Pharmacol. 23 (1983) 523-533
    T.W. May, R. Boor, B. Rambeck, et al., Serum concentrations of rufinamide in children and adults with epilepsy, Ther. Drug Monit. (2011) 214-221
    H.M. Wright, A.V. Chen, S.E. Martinez, et al., Pharmacokinetics of oral rufinamide in dogs, J. Vet. Pharmacol. Ther. 35 (2011) 529-533
    C.J. Landmark, P.N. Patsalos, Drug interactions involving the new second- and third- generation antiepileptic drugs, Expert Rev. 10 (2010) 119-140
    W. Nasreddine, A. Beydoun, S. Atweh, et al., Emerging drugs for partial onset seizures., Expert Opin. Emerg. Drugs. 15 (2010) 415-431
    H.L. Perez, S.L. Boram, C.A. Evans, Development and validation of a quantitative method for determination of retigabine and its N-acetyl metabolite; overcoming challenges associated with circulating labile N-glucuronide metabolites, Anal. Methods. 7 (2015) 723-735
    R. Hempel, H. Schupke, P.J. McNeilly, et al., Metabolism of retigabine (D-23129), a novel anticonvulsant, Drug Metab. Dispos. 27 (1999) 613-622
    J. Borlak, A. Gasparic, M. Locher, et al., N-Glucuronidation of the antiepileptic drug retigabine: results from studies with human volunteers, heterologously expressed human UGTs, human liver, kidney, and liver microsomal membranes of Crigler-Najjar type II, Metabolism. 55 (2006) 711-721
    A. Hiller, N. Nguyen, C.P. Strassburg, et al., Retigabine N-Glucuronidation and Its Potential Role in Enterohepatic Circulation, 27 (1999) 605-612
    DrugBank, Stiripentol, DB09118. https://www.drugbank.ca/drugs/DB09118 (accessed 5 October 2020)
    R. Lu, S. Liu, Q. Wang, et. al., Nanoemulsions as novel oral carriers of stiripentol: Insights into the protective effect and absorption enhancement, Int. J. Nanomedicine. 10 (2015) 4937-4946
    Royal Society of Chemestry. ChemSpider, Stiripentol. http://www.chemspider.com/Chemical-Structure.4470940.html (accessed 5 October 2020)
    I.M. Kapetanovic, C. Rundfeldt, D-23129: A new anticonvulsant compound, CNS Drug Rev. 2 (1996) 308-321
    G. Blackburn-Munro, W. Dalby-Brown, N.R. Mirza, et al., Retigabine: chemical synthesis to clinical application, CNS Drug Rev. 11 (2005) 1-20
    DrugBank, Ezogabine, DB04953. https://www.drugbank.ca/drugs/DB04953 (accessed 5 October 2020)
    Royal Society of Chemestry. ChemSpider, Retigabine. http://www.chemspider.com/Chemical-Structure.108740.html (accessed 5 October 2020)
    DrugBank, Rufinamide, DB06201. https://www.drugbank.ca/drugs/DB06201 (accessed 5 October 2020)
    I. Mazzucchelli, M. Rapetti, C. Fattore, et al., Development and validation of an HPLC-UV detection assay for the determination of rufinamide in human plasma and saliva, Anal. Bioanal. Chem. 401 (2011) 1013-1021
    Royal Society of Chemestry. ChemSpider, Rufinamide. http://www.chemspider.com/Chemical-Structure.114471.html (accessed 5 October 2020)
    M.A. Rogawski, T. Hanada, Preclinical pharmacology of perampanel, a selective non-competitive AMPA receptor antagonist, Acta Neurol. Scand. 127 (2013) 19-24
    Royal Society of Chemestry. ChemSpider, Perampanel. http://www.chemspider.com/Chemical-Structure.8100130.html (accessed 5 October 2020)
    R. Zwart, E. Sher, X. Ping, et al., Perampanel, an Antagonist of a α-Amino-3-Hydroxy-5-Methyl- 4-Isoxazolepropionic Acid Receptors, for the Treatment of Epilepsy: Studies in Human Epileptic Brain and Nonepileptic Brain and in Rodent Models, J. Pharmacol. Exp. Ther. 351 (2014) 124-133
    M. Kumar, N. Reed, R. Liu, et al., Synthesis and Evaluation of Potent KCNQ2/3-Specific Channel Activators., Mol. Pharmacol. 89 (2016) 667-677
    M. Dousa, J. Srbek, S. Radl,et al., Identification, characterization, synthesis and HPLC quantification of new process-related impurities and degradation products in retigabine, J. Pharm. Biomed. Anal. 94 (2014) 71-76
    X. Wu, F. Shao, C. Tao, et al., Development and validation of a stability indicating HPLC method for the determination of retigabine and its related substances in drug substances, J. Chinese Pharm. Sci. 24 (2015) 241-249
    M. Balaji, K.M. Rao, K. Ramakrishna, et al., Development and validation of gradient stability indicating HPLC method for determining Ezogabine and related substances, Anal. Chem. An Indian J. 5 (2015) 176-183
    V. Franco, R. Marchiselli, C. Fattore, et al., Development and Validation of an HPLC-UV Assay for the Therapeutic Monitoring of the New Antiepileptic Drug Perampanel in Human Plasma, Ther. Drug Monit. 38 (2016) 744-750
    D. Paul, L. Allakonda, A. Sahu, et al., Pharmacokinetics and brain uptake study of novel AMPA receptor antagonist perampanel in SD rats using a validated UHPLC-QTOF-MS method, J. Pharm. Biomed. Anal. 149 (2018) 234-241
    O.A. Saleh, M.F. El-Behairy, A.M. Badawey, et al., Analysis of Stiripentol Enantiomers on Several Chiral Stationary Phases: A Comparative Study, Chromatographia. 78 (2015) 267-271
    N. Tamilselvi, A. Rajasekaran, Stability-indicating RP-HPLC method for the determination of ezogabine and identification of its degradation products, J. Pharm. Sci. Res. 8 (2016) 19-23
    Y. Mano, O. Takenaka, K. Kusano, High-performance liquid chromatography - tandem mass spectrometry method for the determination of perampanel , a novel alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist in human plasma, J. Pharm. Biomed. Anal. 107 (2015) 56-62
    Y. Mano, O. Takenaka, K. Kusano, HPLC with fluorescence detection assay of perampanel , a novel AMPA receptor antagonist, in human plasma for clinical pharmacokinetic studies, Biomed. Chromatogr. 29 (2015) 1589-1593
    S. Mohamed, C. Candela, R. Riva, et al., Simple and rapid validated HPLC- fluorescence determination of perampanel in the plasma of patients with epilepsy, Pract. Lab. Med. 10 (2018) 15-20
    Z. Gall, S. Vancea, M.T. Dogaru, et al., Liquid chromatography-mass spectrometric determination of rufinamide in low volume plasma samples, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 940 (2013) 42-46
    M. Contin, S. Mohamed, C. Candela, et al., Simultaneous HPLC-UV analysis of rufinamide, zonisamide, lamotrigine, oxcarbazepine monohydroxy derivative and felbamate in deproteinized plasma of patients with epilepsy, J. Chromatogr. B. 878 (2010) 461-465
    A. V Dalvi, C.T. Uppuluri, B.E. Prasanthi, et al., Design of experiments-based RP - HPLC bioanalytical method development for estimation of Rufinamide in rat plasma and brain and its application in pharmacokinetic study, J. Chromatogr. B. (2018) 1-36
    S. Meirinho, M. Rodrigues, A. Fortuna, et al., Novel bioanalytical method for the quantification of rufinamide in mouse plasma and tissues using HPLC-UV: A tool to support pharmacokinetic studies., J. Chromatogr. B. 1124 (2019) 340-348
    G. la Marca, S. Malvagia, L. Filippi, et al. , Rapid assay of rufinamide in dried blood spots by a new liquid chromatography-tandem mass spectrometric method, J. Pharm. Biomed. Anal. 54 (2011) 192-197
    M.C. Rouan, C. Buffet, L. Masson, et. al., Practice of solid-phase extraction and protein precipitation in the 96-well format combined with high-performance liquid chromatography-ultraviolet detection for the analysis of drugs in plasma and brain, J. Chromatogr. B. 754 (2001) 45-55
    B.S. Kumar, M.M. Annapurna, S. Pavani, Development and validation of a stability indicating RP-HPLC method for the determination of Rufinamide, J. Pharm. Anal. 3 (2013) 66-70
    M.C. Rouan, C. Souppart, L. Alif, et al., Automated analysis of a novel anti-epileptic compound, CGP 33,101, and its metabolite, CGP 47,292, in body fluids by high-performance liquid chromatography and liquid-solid extraction, J Chromatogr B. 667 (1995) 307-313
    S. Baldelli, D. Cattaneo, L. Giodini, et al., Development and validation of a HPLC-UV method for the quantification of antiepileptic drugs in dried plasma spots, Clin. Chem. Lab. Med. 53 (2015) 435-444
    M. Geetha, S. Sait, P.S. Reddy, A stability indicating UPLC method for the estimation of related substances, assay and dissolution of rufinamide, Asian J. Chem. 25 (2013) 9775-9778
    Food and Drug Administration, Guidance for Industry Bioanalytical Method Validation Guidance for Industry Bioanalytical Method Validation. http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm (aceessed 5 October 2020)
    European Medicines Agency, Guideline on bioanalytical method validation. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf (accessed 5 October 2020)
    R. Takahashi, K. Imai, Y. Yamamoto, Determination of Stiripentol in Plasma by High-performance Liquid Chromatography with Fluorescence Detection, Jpn. J. Pharm. Health Care Sci. 41 (2015) 643-650
    V. Franco, K. Baruffi, G. Gatti, et al., A simple and rapid HPLC-UV method for the determination of retigabine in human plasma, Biomed. Chromatogr. (2018). doi: 10.1002/bmc.4168
    W. Bu, M. Nguyen, C. Xu, et al., Determination of N-acetyl retigabine in dog plasma by LC/MS/MS following off-line μElution 96-well solid phase extraction, J. Chromatogr. B. 852 (2007) 465-472
    J. Singh, S. Sangwan, P. Grover, et al., Analytical Method Development and Validation for Assay of Rufinamide Drug, J. Pharm. Technol. Res. Manag. 1 (2013) 191-203
    M. Annapurna, S. Kumar, S.V. Goutam, et al., New stability indicating liquid chromatographic method for the determination of rufinamide in presence of degradant products, Drug Invention Today. 2 (2012) 167-174
    D.J. Hutchinson, Y. Liou, R. Best, et al., Stability of Extemporaneously Prepared Rufinamide Oral Suspensions, Ann. Pharmacother. 44 (2010) 462-465
    M. Xu, Y. Ni, Y. Zhou, et al., Pharmacokinetics and Tolerability of Rufinamide Following Single and Multiple Oral Doses and Effect of Food on Pharmacokinetics in Healthy Chinese Subjects, Eur. J. Drug Metab. Pharmacokinet. 41 (2016) 541-548
    U. de Garzia, A. D’Urso, F. Ranzato, et al., A Liquid Chromatography-Mass Spectrometry Assay for Determination of Perampanel and Concomitant Antiepileptic Drugs in the Plasma of Patients with Epilepsy, Compared with A Fluorescent HPLC Assay, Ther. Drug Monit. 40 (2018) 477-485
    D. Zhang, X. Song, J. Su, Isolation, identification and structure elucidation of two novel process-related impurities of retigabine, J. Pharm. Biomed. Anal. 99 (2014) 22-27
    L. Novakova, H. Vlckova, A review of current trends and advances in modern bio-analytical methods: Chromatography and sample preparation, Anal. Chim. Acta. 656 (2009) 8-35
    S. Soltani, A. Jouyban, Biological sample preparation: Attempts on productivity increasing in bioanalysis, Bioanalysis. 6 (2014) 1691-1710
    N.Y. Ashri, M. Abdel-Rehim, Sample treatment based on extraction techniques in biological matrices, Bioanalysis. 3 (2011) 2003-2018
    A. Bergeron, M. Furtado, F. Garofolo, Importance of using highly pure internal standards for successful liquid chromatography/tandem mass spectrometric bioanalytical assays, Rapid Commun. Mass Spectrom. 23 (2009) 1287-1297
    M. Vogeser, Liquid chromatography-tandem mass spectrometry - Application in the clinical laboratory, Clin. Chem. Lab. Med. 41 (2003) 117-126
    N.G. Knebel, S. Grieb, S. Leisenheimer, et al., Determination of retigabine and its acetyl metabolite in biological matrices by on-line solid-phase extraction (column switching) liquid chromatography with tandem mass spectrometry, J. Chromatogr. B. 748 (2000) 2006
    G. Alves, M. Rodrigues, A. Fortuna, et al., A critical review of microextraction by packed sorbent as a sample preparation approach in drug bioanalysis, Bioanalysis. 5 (2013) 1-34
    I.M. Valente, J.A. Rodrigues, Recent advances in salt-assisted LLE for analyzing biological samples, Bioanalysis. 7 (2015) 2187-2193
    Y.Q. Tang, N. Weng, Salting-out assisted liquid - liquid extraction for bioanalysis, Bioanalysis. 5 (2013) 1583-1598
    N.A. Hawkins, L.L. Anderson, T.S. Gertler, et al., Screening of conventional anticonvulsants in a genetic mouse model of epilepsy, Ann. Clin. Transl. Neurol. 4 (2017) 326-339
    S. Auvin, C. Lecointe, N. Dupuis, et al., Stiripentol exhibits higher anticonvulsant properties in the immature than in the mature rat brain, Epilepsia. 54 (2013) 2082-2090
    J.J. Luszczki, N. Ratnaraj, P.N. Patsalos, et al., Characterization of the Anticonvulsant, Behavioral and Pharmacokinetic Interaction Profiles of Stiripentol in Combination with Clonazepam, Ethosuximide, Phenobarbital and Valproate Using Isobolographic Analysis, Epilepsia. 47 (2006) 1841-1854
    J.J. Luszczki, M.K. Trojnar, N. Ratnaraj, et al., Interactions of stiripentol with clobazam and valproate in the mouse maximal electroshock-induced seizure model, Epilepsy Res. 90 (2010) 188-198
    R. Arends, K. Zhang, R. Levy, et al., Stereoselective pharmacokinetics of stiripentol: an explanation for the development of tolerance to anticonvulsant effect, Epilepsy Res. 18 (1994) 91-96
    J.J. Luszczki, B. Miziak, Beneficial Combination of Lacosamide with Retigabine in Experimental Animals: An Isobolographic Analysis, Pharmacology. 101 (2018) 22-28
    L.A. Brunner, M.L. Powell, An automated method for the determination of a new potential antiepileptic agent (CGP 33101) in human plasma using high performance liquid chromatography, Biomed Chromatogr. 6 (1992) 278-282
    S. Deeb, D.A. McKeown, H.J. Torrance, et al., Simultaneous analysis of 22 antiepileptic drugs in postmortem blood, serum and plasma using LC-MS-MS with a focus on their role in forensic cases, J. Anal. Toxicol. 38 (2014) 485-494
    P.N. Patsalos, M. Gougoulaki, J.W. Sander, Perampanel Serum Concentrations in Adults With Epilepsy: Effect of Dose, Age, Sex, and Concomitant Anti-Epileptic Drugs, Ther. Drug Monit. 38 (2016) 358-364
    H. Engelhardt, C. Blay, J. Saar, Reversed Phase Chromatography - the Mystery of Surface Silanols, Chromatographia. 62 (2005) 19-29
    Waters Corporation, A Simplified Solid Phase Extraction (SPE) Protocol for Bioanalysis Using Oasis HLB. www.waters.com/webassets/cms/library/docs/720005140en.pdf (accessed 5 October 2020)
    K. Harisudha, G. Lavanya, M.M. Eswarudu, et al., RP-HPLC method development and validation for estimation of rufinamide in bulk and its pharmaceutical dosage form, Int. J. Pharm. Res. Anal. 2 (2012) 392-397
    P. Ravisankar, C. Lokapavani, C. Devadasu, et al., An improved RP-HPLC method for the quantitative determination and validation of Retigabine in bulk and Pharmaceutical formulation, Int. J. Res. Pharm. Sci. 4 (2014) 21-26
    J.J. Luszczki, M. Zagaja, B. Miziak, et al., Synergistic Interaction of Retigabine with Levetiracetam in the Mouse Maximal Electroshock-Induced Seizure Model: A Type II Isobolographic Analysis, Pharmacology. 96 (2015) 11-15
    B.E. Gidal, J. Ferry, O. Majid, et al., Concentration - effect relationships with perampanel in patients with pharmacoresistant partial-onset seizures, Epilepsia. 54 (2013) 1490-1497
    L. Snyder, J. Kirkland, Introduction to Modern Liquid Chromatography, John Wiley and Sons, New York, 2011
    M. Mendes, A. Miranda, T. Cova, et al., Modeling of ultra-small lipid nanoparticle surface charge for targeting glioblastoma, Eur. J. Pharm. Sci. 117 (2018) 255-269
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (170) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return