Alessia Rosetti, Rosella Ferretti, Leo Zanitti, Adriano Casulli, Claudio Villani, Roberto Cirilli. Single-run reversed-phase HPLC method for determining sertraline content, enantiomeric purity, and related substances in drug substance and finished product[J]. Journal of Pharmaceutical Analysis, 2020, 10(6): 610-616. doi: 10.1016/j.jpha.2020.11.002
Citation: Alessia Rosetti, Rosella Ferretti, Leo Zanitti, Adriano Casulli, Claudio Villani, Roberto Cirilli. Single-run reversed-phase HPLC method for determining sertraline content, enantiomeric purity, and related substances in drug substance and finished product[J]. Journal of Pharmaceutical Analysis, 2020, 10(6): 610-616. doi: 10.1016/j.jpha.2020.11.002

Single-run reversed-phase HPLC method for determining sertraline content, enantiomeric purity, and related substances in drug substance and finished product

doi: 10.1016/j.jpha.2020.11.002
Funds:

The authors are grateful to Ms. Antonina Mosca (Istituto Superiore di Sanità) for her technical assistance and Dr. Paolo Vatta (Istituto Superiore di Sanità) for improving the English language of the manuscript.

  • Received Date: Apr. 14, 2020
  • Accepted Date: Nov. 03, 2020
  • Rev Recd Date: Nov. 03, 2020
  • Available Online: Jan. 24, 2022
  • Publish Date: Dec. 10, 2020
  • A direct enantio-, diastereo-, and chemo-selective high-performance liquid chromatographic method was developed for determining the content, enantiomeric purity, and related substances of the chiral antidepressant drug sertraline HCl in a single chromatographic run. The separation was achieved on a chiral stationary phase based on amylose tris(3-chloro-5-methylphenylcarbamate) under reversed-phase conditions. The method was optimized by evaluating the influence of the temperature and mobile phase composition on the retention and selectivity. The application of the single-run approach allowed to baseline resolve all investigated species in less than 15 min, without using buffers or tandem-coupled columns. The chromatographic method was validated according to the guidelines of the Official Medicines Control Laboratory and applied to control the content of sertraline HCl and related chiral substances in a generic antidepressant formulation.
  • M. Lammerhofer, Chiral recognition by enantioselective liquid chromatography: mechanisms and modern chiral stationary phases, J. Chromatogr. A 1217 (2010) 814-856
    A. Calcaterra, I. D’Acquarica, The market of chiral drugs: Chiral switches versus de novo enantiomerically pure compounds, J. Pharm. Biomed. Anal. 147 (2018) 323-340
    J. Ventimiglia, A. H. Kalali, Generic penetration in the retail antidepressant market, Psychiatry (Edgmont) 7 (2010) 9-11
    M. Budau, G. Hancu, A. Rusu, et al., Chirality of modern antidepressants: an overview, Adv. Pharm. Bull. 7 (2017) 495-500
    The European Pharmacopoeia, Monograph: Sertraline Hydrochloride 1705 (2019)
    R. Nageswara Rao, M.V.N. Kumar Talluri, Pawan K. Maurya, Separation of stereoisomers of sertraline and its related enantiomeric impurities on a dimethylated β-cyclodextrin stationary phase by HPLC, J. Pharm. Biomed. Anal. 50 (2009) 281-286
    R. N. Rao, K. N. Kumar, D. D. Shinde, Determination of rat plasma levels of sertraline enantiomers using direct injection with achiral-chiral column switching by LC-ESI/MS/MS, J. Pharm. Biomed. Anal. 52 (2010) 398-405
    R. Cirilli, S. Carradori, A. Casulli, et al., A chromatographic study on the retention behavior of the amylose tris(3-chloro-5-methylphenylcarbamate) chiral stationary phase under aqueous conditions, J. Sep. Sci. 41 (2018) 4014-4021
    R. Cirilli, P. Guglielmi, F. R. Formica, et al., The sodium salt of the enantiomers of ricobendazole: preparation, solubility, and chiroptical properties, J. Pharm. Biomed. Anal. 139 (2017) 1-7
    L. Da Costa, E. Scheers, A. Coluccia, et al., Heterocyclic pharmacochemistry of new rhinovirus antiviral agents: a combined computational and experimental study, Eur. J. Med. Chem. 140 (2017) 528-541
    C. Panella, R. Ferretti, A. Casulli, et al., Temperature and eluent composition effects on enantiomer separation of carvedilol by high-performance liquid chromatography on immobilized amylose-based chiral stationary phases, J. Pharm. Anal. 9 (2019) 324-331
    R. Ferretti, L. Zanitti, A. Casulli, et al., Unusual retention behavior of omeprazole and its chiral impurities B and E on the amylose tris (3-chloro-5-methylphenylcarbamate) chiral stationary phase in polar organic mode, J. Pharm. Anal. 8 (2018) 234-239
    M. E. Diaz Merino, R. N. Echevarria, E. Lubomirsky, et al., Enantioseparation of the racemates of a number of pesticides on a silica based column with immobilized amylose tris(3-chloro-5-methylphenylcarbamate), Microchem. J. 149 (2019) 103970
    K. Tachibana, A. Ohnishi, Reversed-phase liquid chromatographic separation of enantiomers on polysaccharide type chiral stationary phases, J. Chromatogr. A 906 (2001) 127-154
    G. D’Orazio, C. Fanali, S. Fanali, et al., Further study on enantiomer resolving ability of amylose tris(3-chloro-5-methylphenylcarbamate) covalently immobilized onto silica in nano-liquid chromatography and capillary electrochromatography, J. Chromatogr. A 1623 (2020) 461213
    B. Chankvetadze, L. Chankvetadze, S. Sidamonidze, et al., 3-Fluoro-, 3-chloro- and 3-bromo-5-methylphenylcarbamates of cellulose and amylose as chiral stationary phases for high performance liquid chromatographic enantioseparation, J. Chromatogr. A 787 (1997) 67-77
    R. Ferretti. L. Zanitti, R. Cirilli, Development of a high-performance liquid chromatography method for the simultaneous determination of chiral impurities and assay of (S)-clopidogrel using a cellulose-based chiral stationary phase in methanol/water mode, J. Sep. Sci. 41 (2018) 1208-1215
    A. Cavazzini, G. Nadalini, F. Dondi, et al., Study of mechanisms of chiral discrimination of amino acids and their derivatives on a teicoplanin-based chiral stationary phase, J. Chromatogr. A 1031 (2004) 143-158
  • Relative Articles

  • Cited by

    Periodical cited type(17)

    1. Ge, L., Li, X., Zhu, G. et al. Recent developments and applications of solid membrane in chiral separation. Journal of Chromatography A, 2025, 1743: 465652. doi:10.1016/j.chroma.2025.465652
    2. Morais, A.C.B., Aguiar, A.S.N., Perjesi, P. et al. A comprehensive molecular description of sertraline hydrochloride: From solid state to electronic structure. Computational and Theoretical Chemistry, 2024, 1242: 114957. doi:10.1016/j.comptc.2024.114957
    3. Kaviani, R., Jouyban, A., Javan, M. et al. Enantioseparation strategies for sertraline by instrumental and crystallization-based techniques: An important issue in quality control. Biomedical Chromatography, 2024, 38(12): e6031. doi:10.1002/bmc.6031
    4. Aran-Dinaki, F., Hassaninejad-Darzi, S.K., Asadollahi-Baboli, M. Fabrication of fMW@TiO2@MoS2-Sm2S3/GCE electrochemical nanosensor for simultaneous measurement of sertraline and buspirone neuroleptic drugs. Surfaces and Interfaces, 2024, 53: 105063. doi:10.1016/j.surfin.2024.105063
    5. Shaha, S.N., Nangare, S.N., Patil, P.O. et al. A review on different analytical strategies for the detection of sertraline: Current challenges and future perspective. Microchemical Journal, 2024, 205: 111303. doi:10.1016/j.microc.2024.111303
    6. Mammone, F.R., Sadutto, D., D’Ettorre, G. et al. Improving the Current European Pharmacopoeia Enantio-Selective HPLC Method for the Determination of Enantiomeric Purity in Atorvastatin Calcium Salt Drug Substance. Separations, 2024, 11(5): 154. doi:10.3390/separations11050154
    7. Papp, L.A., Szabó, Z.I., Hancu, G. et al. Comprehensive Review on Chiral Stationary Phases in Single-Column Simultaneous Chiral–Achiral HPLC Separation Methods. Molecules, 2024, 29(6): 1346. doi:10.3390/molecules29061346
    8. Safdarali, A.M., Jha, L.L., Patel, L.D. A Comprehensive Review of Analytical Methods Developed for Selective Serotonin Reuptake Inhibitors (SSRIs). Current Pharmaceutical Analysis, 2024, 20(6): 373-408. doi:10.2174/0115734129298467240718104217
    9. Peluso, P., Chankvetadze, B. Application of enantioselective liquid chromatography. Liquid Chromatography: Applications, 2023. doi:10.1016/B978-0-323-99969-4.00016-4
    10. Szabó, Z.-I., Bartalis-Fábián, Á., Tóth, G. Simultaneous Determination of Escitalopram Impurities including the R-enantiomer on a Cellulose tris(3, 5-Dimethylphenylcarbamate)-Based Chiral Column in Reversed-Phase Mode. Molecules, 2022, 27(24): 9022. doi:10.3390/molecules27249022
    11. Grover, P., Bhardwaj, M., Mukherjee, D. Identification and characterization of forced degradation products of sertraline hydrochloride using UPLC, ultra-high-performance liquid Chromatography-Quadrupole-Time of flight mass spectrometry (UHPLC-Q-TOF/MS/MS) and NMR. Journal of Pharmaceutical and Biomedical Analysis, 2022, 221: 115045. doi:10.1016/j.jpba.2022.115045
    12. Pyka-Pająk, A.. New TLC Method Combined with Densitometry for Determination of Sertraline and Fluoxetine in Pharmaceutical Preparations. Processes, 2022, 10(10): 2083. doi:10.3390/pr10102083
    13. Cantatore, C., La Regina, G., Ferretti, R. et al. Single-run chemo- and enantio-selective high-performance liquid chromatography separation of tramadol and its principal metabolite, O-desmethyltramadol, using a chlorinated immobilized amylose-based chiral stationary phase under multimodal elution conditions. Separation Science Plus, 2022, 5(5): 99-104. doi:10.1002/sscp.202200009
    14. Parys, W., Pyka-Pająk, A. Influence of Chromatographic Conditions on LOD and LOQ of Fluoxetine and Sertraline Analyzed by TLC-Densitometric Method. Processes, 2022, 10(5): 971. doi:10.3390/pr10050971
    15. Vashistha, V.K., Sethi, S., Tyagi, I. et al. Chirality of antidepressive drugs: An overview of stereoselectivity. Asian Biomedicine, 2022, 16(2): 55-69. doi:10.2478/abm-2022-0008
    16. Gamidi, R.K., Dandawate, M., Tothadi, S. et al. Separation of a diastereomeric diol pair using the mechanical properties of crystals. CrystEngComm, 2021, 23(40): 7056-7060. doi:10.1039/d1ce01055g
    17. Grybinik, S., Bosakova, Z. An overview of chiral separations of pharmaceutically active substances by HPLC (2018–2020). Monatshefte fur Chemie, 2021, 152(9): 1033-1043. doi:10.1007/s00706-021-02832-5

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 31.8 %FULLTEXT: 31.8 %META: 66.1 %META: 66.1 %PDF: 2.1 %PDF: 2.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.8 %其他: 6.8 %China: 58.9 %China: 58.9 %Hungary: 1.3 %Hungary: 1.3 %India: 2.5 %India: 2.5 %Other: 1.7 %Other: 1.7 %United States: 28.8 %United States: 28.8 %其他ChinaHungaryIndiaOtherUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (155) PDF downloads(5) Cited by(17)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return