Citation: | Yong Deng, Cunwu Chen, Lingxiao Chen, Bangxing Han, Shaoping Li, Jing Zhao. Fast saccharide mapping method for quality consistency evaluation of commercial xylooligosaccharides collected in China[J]. Journal of Pharmaceutical Analysis, 2021, 11(3): 284-291. doi: 10.1016/j.jpha.2020.08.013 |
A.F.A. Carvalho, P.d.O. Neto, D.F. da Silva, et al., Xylo-oligosaccharides from lignocellulosic materials: Chemical structure, health benefits and production by chemical and enzymatic hydrolysis, Food Res. Int., 51 (2013) 75-85. http://doi.org/10.1016/j.foodres.2012.11.021
|
J. Bian, P. Peng, F. Peng, et al., Microwave-assisted acid hydrolysis to produce xylooligosaccharides from sugarcane bagasse hemicelluloses, Food Chem., 156 (2014) 7-13. http://doi.org/10.1016/j.foodchem.2014.01.112
|
V. Kumar, T. Satyanarayana, Generation of xylooligosaccharides from microwave irradiated agroresidues using recombinant thermo-alkali-stable endoxylanase of the polyextremophilic bacterium Bacillus halodurans expressed in Pichia pastoris, Bioresour. Technol., 179 (2015) 382-389. http://doi.org/10.1016/j.biortech.2014.12.049
|
M. Nieto-Dominguez, L.I. de Eugenio, M.J. York-Duran, et al., Prebiotic effect of xylooligosaccharides produced from birchwood xylan by a novel fungal GH11 xylanase, Food Chem., 232 (2017) 105-113. http://doi.org/10.1016/j.foodchem.2017.03.149
|
Y.C. Chung, C.K. Hsu, C.Y. Ko, et al., Dietary intake of xylooligosaccharides improves the intestinal microbiota, fecal moisture, and pH value in the elderly, Nutr. Res., 27 (2007) 756-761. http://doi.org/10.1016/j.nutres.2007.09.014
|
J.M. Campbell, G.C. Fahey, B.W. Wolf, Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH and microflora in rats, J. Nutr., 127 (1997) 130-136. http://doi.org/10.1038/sj.ijo.0800371
|
C.K. Hsu, J.W. Liao, Y.C. Chung, et al., Xylooligosaccharides and fructooligosaccharides affect the intestinal microbiota and precancerous colonic lesion development in rats, J. Nutr., 134 (2004) 1523-1528. http://doi.org/10.1093/jn/134.6.1523
|
H.H. Chen, Y.K. Chen, H.C. Chang, et al., Immunomodulatory effects of xylooligosaccharides, Food Sci. Technol. Res., 18 (2012) 195-199. http://doi.org/10.3136/fstr.18.195
|
J. Bian, F. Peng, X.P. Peng, et al., Structural features and antioxidant activity of xylooligosaccharides enzymatically produced from sugarcane bagasse, Bioresour. Technol., 127 (2013) 236-241. http://doi.org/10.1016/j.biortech.2012.09.112
|
P. Christakopoulos, P. Katapodis, E. Kalogeris, et al., Antimicrobial activity of acidic xylo-oligosaccharides produced by family 10 and 11 endoxylanases, Int. J. Biol. Macromol., 31 (2003) 171-175. http://doi.org/10.1016/s0141-8130(02)00079-x
|
A. Moure, P. Gullon, H. Dominguez, et al., Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals, Process Biochem., 41 (2006) 1913-1923. http://doi.org/10.1016/j.procbio.2006.05.011
|
M. Vazquez, J. Alonso, H. Dominguez, et al., Xylooligosaccharides: manufacture and applications, Trends Food Sci. Technol., 11 (2000) 387-393. http://doi.org/10.1016/S0924-2244(01)00031-0
|
A.A. Aachary, S.G. Prapulla, Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties, and applications, Compr. Rev. Food Sci. Food Saf., 10 (2011) 2-16. http://doi.org/10.1111/j.1541-4337.2010.00135.x
|
S.P. Li, D.T. Wu, G.P. Lv, et al., Carbohydrates analysis in herbal glycomics, TrAC Trend. Anal. Chem., 52 (2013) 155-169. http://doi.org/10.1016/j.trac.2013.05.020
|
J. Pu, X. Zhao, Q. Wang, et al., Development and validation of a HPLC method for determination of degree of polymerization of xylo-oligosaccharides, Food Chem., 213 (2016) 654-659. http://doi.org/10.1016/j.foodchem.2016.07.014
|
L. Condezo-Hoyos, E. Perez-Lopez, P. Ruperez, Improved evaporative light scattering detection for carbohydrate analysis, Food Chem., 180 (2015) 265-271. http://doi.org/10.1016/j.foodchem.2015.02.039
|
F. Li, H. Wang, H. Xin, et al., Development, validation and application of a hydrophilic interaction liquid chromatography-evaporative light scattering detection based method for process control of hydrolysis of xylans obtained from different agricultural wastes, Food Chem., 212 (2016) 155-161. http://doi.org/10.1016/j.foodchem.2016.05.118
|
R.T. Tian, P.S. Xie, H.P. Liu, Evaluation of traditional Chinese herbal medicine: Chaihu (Bupleuri Radix) by both high-performance liquid chromatographic and high-performance thin-layer chromatographic fingerprint and chemometric analysis, J. Chromatogr. A, 1216 (2009) 2150-2155. http://doi.org/10.1016/j.chroma.2008.10.127
|
E. Sanzini, M. Badea, A. Dos Santos, et al., Quality control of plant food supplements, Food Funct., 2 (2011) 740-746. http://doi.org/10.1039/c1fo10112a
|
C. Borromei, M. Careri, A. Cavazza, et al., Evaluation of fructooligosaccharides and inulins as potentially health benefiting food ingredients by HPAEC-PED and MALDI-TOF MS, Int. J. Anal. Chem., 2009 (2009) 1-9. http://doi.org/10.1155/2009/530639
|
J. Liu, V. Kisonen, S. Willfor, et al., Profiling the substitution pattern of xyloglucan derivatives by integrated enzymatic hydrolysis, hydrophilic-interaction liquid chromatography and mass spectrometry, J. Chromatogr. A, 1463 (2016) 110-120. http://doi.org/10.1016/j.chroma.2016.08.016
|
M. Lopez-Garcia, M.S. Garcia, J.M. Vilarino, et al., MALDI-TOF to compare polysaccharide profiles from commercial health supplements of different mushroom species, Food Chem., 199 (2016) 597-604. http://doi.org/10.1016/j.foodchem.2015.12.016
|
K. Hachem, C. Faugeron, M. Kaid-Harche, et al., Structural investigation of cell wall xylan polysaccharides from the leaves of Algerian Argania spinosa, Molecules, 21 (2016) 1587. http://doi.org/10.3390/molecules21111587
|
A. Shubhakar, R.P. Kozak, K.R. Reiding, et al., Automated high-throughput permethylation for glycosylation analysis of biologics using MALDI-TOF-MS, Anal. Chem., 88 (2016) 8562-8569. http://doi.org/10.1021/acs.analchem.6b01639
|
W. Gao, H. Li, Y. Liu, et al., Rapid and sensitive analysis of N-glycans by MALDI-MS using permanent charge derivatization and methylamidation, Talanta, 161 (2016) 554-559. http://doi.org/10.1016/j.talanta.2016.09.004
|
L.L. Qu, Y.M. Jiang, X.Y. Huang, et al., High-throughput monitoring of multiclass syrup adulterants in honey based on the oligosaccharide and polysaccharide profiles by MALDI mass spectrometry, J. Agric. Food Chem. 67, (2019) 11256−11261. http://doi.org/10.1021/acs.jafc.9b05317
|
Z.Y. Yang, D.T. Wu, C.W. Chen, et al., Preparation of xylooligosaccharides from xylan by controlled acid hydrolysis and fast protein liquid chromatography coupled with refractive index detection, Sep. Purif. Technol., 171 (2016) 151-156. http://doi.org/10.1016/j.seppur.2016.06.051
|
D.T. Wu, K.L. Cheong, L.Y. Wang, et al., Characterization and discrimination of polysaccharides from different species of Cordyceps using saccharide mapping based on PACE and HPTLC, Carbohydr. Polym., 103 (2014) 100-109. http://doi.org/10.1016/j.carbpol.2013.12.034
|
K.L. Cheong, J. Li, J. Zhao, et al., A simple analysis of fructooligosaccharides in two medicinal plants by high-performance thin-layer chromatography, JPC-J. Planar Chromatogr. - Mod. TLC, 27 (2014) 245-250. http://doi.org/10.1556/JPC.27.2014.4.2
|
H. Yang, J. Wang, F. Song, et al., Isoliquiritigenin (4,2',4'-trihydroxychalcone): a new matrix-assisted laser desorption/ionization matrix with outstanding properties for the analysis of neutral oligosaccharides, Anal. Chim. Acta, 701 (2011) 45-51. http://doi.org/10.1016/j.aca.2011.05.051
|
D.T. Wu, L.Z. Meng, L.Y. Wang, et al., Chain conformation and immunomodulatory activity of a hyperbranched polysaccharide from Cordyceps sinensis, Carbohydr. Polym., 110 (2014) 405-414. http://doi.org/10.1016/j.carbpol.2014.04.044
|
J. Zhao, S.P. Li, J. Yang, et al., Quality evaluation of different products derived from Ganoderma, J. Med. Plant, 6 (2012) 1969-1974. http://doi.org/10.5897/JMPR11.1668
|
I.N. Urakova, O.N. Pozharitskaya, A.N. Shikov, et al., Comparison of high performance TLC and HPLC for separation and quantification of chlorogenic acid in green coffee bean extracts, J. Sep. Sci., 31 (2008) 237-241. http://doi.org/10.1002/jssc.200700472
|
A. Reis, M.R.M. Domingues, A.J. Ferrer-Correia, et al., Structural characterisation by MALDI-MS of olive xylo-oligosaccharides obtained by partial acid hydrolysis, Carbohydr. Polym., 53 (2003) 101-107. http://doi.org/10.1016/s0144-8617(03)00007-9
|
Y. Nakahara, K. Yamauchi, S. Saka, MALDI-TOF/MS analyses of decomposition behavior of beech xylan as treated by semi-flow hot-compressed water, J. Wood Sci., 60 (2014) 225-231. http://doi.org/10.1007/s10086-014-1396-0
|
T. Ohbuchi, T. Takahashi, N. Azumi, et al., Structual analysis of neutral and acidic xylooligosaccharides from hardwood kraft pulp, and their utilization by intestinal bacteria in vitro, Biosci. Biotech. Bioch., 73 (2009) 2070-2076. http://doi.org/10.1271/bbb.90260
|
J.E. Araujo, S. Jorge, R. Magrico, et al., Classifying patients in peritoneal dialysis by mass spectrometry-based profiling, Talanta, 152 (2016) 364-370. http://doi.org/10.1016/j.talanta.2016.02.026
|
V. Kumar, T. Satyanarayana, Applicability of thermo-alkali-stable and cellulase-free xylanase from a novel thermo-halo-alkaliphilic Bacillus halodurans in producing xylooligosaccharides, Biotechnol. Letter, 33 (2011) 2279. http://doi.org/10.1007/s10529-011-0698-1
|
C. Moulis, G. Joucla, D. Harrison, et al., Understanding the polymerization mechanism of glycoside-hydrolase family 70 glucansucrases, J. Biol. Chem., 281 (2006) 31254-31267. http://doi.org/10.1074/jbc.M604850200
|