Volume 11 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
Yong Deng, Cunwu Chen, Lingxiao Chen, Bangxing Han, Shaoping Li, Jing Zhao. Fast saccharide mapping method for quality consistency evaluation of commercial xylooligosaccharides collected in China[J]. Journal of Pharmaceutical Analysis, 2021, 11(3): 284-291. doi: 10.1016/j.jpha.2020.08.013
Citation: Yong Deng, Cunwu Chen, Lingxiao Chen, Bangxing Han, Shaoping Li, Jing Zhao. Fast saccharide mapping method for quality consistency evaluation of commercial xylooligosaccharides collected in China[J]. Journal of Pharmaceutical Analysis, 2021, 11(3): 284-291. doi: 10.1016/j.jpha.2020.08.013

Fast saccharide mapping method for quality consistency evaluation of commercial xylooligosaccharides collected in China

doi: 10.1016/j.jpha.2020.08.013
Funds:

D Program of China (2019YFC1711300), the Science and Technology Development Fund, Macau SAR (File no. 0075/2018/A2, 034/2017/A1 and 0017/2019/AKP), and the University of Macau (File no. MYRG2018-00083-ICMS, MYRG2019-00128-ICMS, CPG2020-00021-ICMS).

The research was partially funded by grants from the National Natural Science Foundation of China (No. 81673389), the National Key R&

  • Received Date: Mar. 27, 2020
  • Accepted Date: Aug. 31, 2020
  • Rev Recd Date: Apr. 30, 2020
  • Available Online: Jan. 24, 2022
  • Publish Date: Jun. 15, 2021
  • Due to the extensive use of xylooligosaccharides (XOS) as functional food ingredients, many inferior goods and even adulterants are generally found in the market, which may pose a health hazard to certain populations. Chromatography method such as high-performance liquid chromatography (HPLC) and high-performance thin-layer chromatography (HPTLC) is traditionally applied for the quality analysis of XOS. However, it is time consuming due to the prolonged separation and pre- or post- derivatization procedure. In this study, a fast saccharide mapping method based on matrix-assisted laser desorption/time-of-flight mass spectrometry (MALDI-TOF-MS) was developed for the quality consistency analysis of 22 batches of XOS collected from different manufacturers in China. The time needed for saccharides analysis using MALDI-MS was less than 30 min for one plate, at least 6 times faster than that by the traditional HPTLC chromatography method. In addition, MALDI-MS possessed higher resolution for XOS with DP4-DP7 based on the difference of m/z, which is hardly separated using HPTLC. The results showed that XOS were present only in samples XY01-XY11, samples XY12-XY14 only consisted of hex oligosaccharides, and samples XY15-XY22 were free of oligosaccharides. These indicate that the quality consistency of XOS products in the China market was poor, which should be carefully investigated.
  • loading
  • A.F.A. Carvalho, P.d.O. Neto, D.F. da Silva, et al., Xylo-oligosaccharides from lignocellulosic materials: Chemical structure, health benefits and production by chemical and enzymatic hydrolysis, Food Res. Int., 51 (2013) 75-85. http://doi.org/10.1016/j.foodres.2012.11.021
    J. Bian, P. Peng, F. Peng, et al., Microwave-assisted acid hydrolysis to produce xylooligosaccharides from sugarcane bagasse hemicelluloses, Food Chem., 156 (2014) 7-13. http://doi.org/10.1016/j.foodchem.2014.01.112
    V. Kumar, T. Satyanarayana, Generation of xylooligosaccharides from microwave irradiated agroresidues using recombinant thermo-alkali-stable endoxylanase of the polyextremophilic bacterium Bacillus halodurans expressed in Pichia pastoris, Bioresour. Technol., 179 (2015) 382-389. http://doi.org/10.1016/j.biortech.2014.12.049
    M. Nieto-Dominguez, L.I. de Eugenio, M.J. York-Duran, et al., Prebiotic effect of xylooligosaccharides produced from birchwood xylan by a novel fungal GH11 xylanase, Food Chem., 232 (2017) 105-113. http://doi.org/10.1016/j.foodchem.2017.03.149
    Y.C. Chung, C.K. Hsu, C.Y. Ko, et al., Dietary intake of xylooligosaccharides improves the intestinal microbiota, fecal moisture, and pH value in the elderly, Nutr. Res., 27 (2007) 756-761. http://doi.org/10.1016/j.nutres.2007.09.014
    J.M. Campbell, G.C. Fahey, B.W. Wolf, Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH and microflora in rats, J. Nutr., 127 (1997) 130-136. http://doi.org/10.1038/sj.ijo.0800371
    C.K. Hsu, J.W. Liao, Y.C. Chung, et al., Xylooligosaccharides and fructooligosaccharides affect the intestinal microbiota and precancerous colonic lesion development in rats, J. Nutr., 134 (2004) 1523-1528. http://doi.org/10.1093/jn/134.6.1523
    H.H. Chen, Y.K. Chen, H.C. Chang, et al., Immunomodulatory effects of xylooligosaccharides, Food Sci. Technol. Res., 18 (2012) 195-199. http://doi.org/10.3136/fstr.18.195
    J. Bian, F. Peng, X.P. Peng, et al., Structural features and antioxidant activity of xylooligosaccharides enzymatically produced from sugarcane bagasse, Bioresour. Technol., 127 (2013) 236-241. http://doi.org/10.1016/j.biortech.2012.09.112
    P. Christakopoulos, P. Katapodis, E. Kalogeris, et al., Antimicrobial activity of acidic xylo-oligosaccharides produced by family 10 and 11 endoxylanases, Int. J. Biol. Macromol., 31 (2003) 171-175. http://doi.org/10.1016/s0141-8130(02)00079-x
    A. Moure, P. Gullon, H. Dominguez, et al., Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals, Process Biochem., 41 (2006) 1913-1923. http://doi.org/10.1016/j.procbio.2006.05.011
    M. Vazquez, J. Alonso, H. Dominguez, et al., Xylooligosaccharides: manufacture and applications, Trends Food Sci. Technol., 11 (2000) 387-393. http://doi.org/10.1016/S0924-2244(01)00031-0
    A.A. Aachary, S.G. Prapulla, Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties, and applications, Compr. Rev. Food Sci. Food Saf., 10 (2011) 2-16. http://doi.org/10.1111/j.1541-4337.2010.00135.x
    S.P. Li, D.T. Wu, G.P. Lv, et al., Carbohydrates analysis in herbal glycomics, TrAC Trend. Anal. Chem., 52 (2013) 155-169. http://doi.org/10.1016/j.trac.2013.05.020
    J. Pu, X. Zhao, Q. Wang, et al., Development and validation of a HPLC method for determination of degree of polymerization of xylo-oligosaccharides, Food Chem., 213 (2016) 654-659. http://doi.org/10.1016/j.foodchem.2016.07.014
    L. Condezo-Hoyos, E. Perez-Lopez, P. Ruperez, Improved evaporative light scattering detection for carbohydrate analysis, Food Chem., 180 (2015) 265-271. http://doi.org/10.1016/j.foodchem.2015.02.039
    F. Li, H. Wang, H. Xin, et al., Development, validation and application of a hydrophilic interaction liquid chromatography-evaporative light scattering detection based method for process control of hydrolysis of xylans obtained from different agricultural wastes, Food Chem., 212 (2016) 155-161. http://doi.org/10.1016/j.foodchem.2016.05.118
    R.T. Tian, P.S. Xie, H.P. Liu, Evaluation of traditional Chinese herbal medicine: Chaihu (Bupleuri Radix) by both high-performance liquid chromatographic and high-performance thin-layer chromatographic fingerprint and chemometric analysis, J. Chromatogr. A, 1216 (2009) 2150-2155. http://doi.org/10.1016/j.chroma.2008.10.127
    E. Sanzini, M. Badea, A. Dos Santos, et al., Quality control of plant food supplements, Food Funct., 2 (2011) 740-746. http://doi.org/10.1039/c1fo10112a
    C. Borromei, M. Careri, A. Cavazza, et al., Evaluation of fructooligosaccharides and inulins as potentially health benefiting food ingredients by HPAEC-PED and MALDI-TOF MS, Int. J. Anal. Chem., 2009 (2009) 1-9. http://doi.org/10.1155/2009/530639
    J. Liu, V. Kisonen, S. Willfor, et al., Profiling the substitution pattern of xyloglucan derivatives by integrated enzymatic hydrolysis, hydrophilic-interaction liquid chromatography and mass spectrometry, J. Chromatogr. A, 1463 (2016) 110-120. http://doi.org/10.1016/j.chroma.2016.08.016
    M. Lopez-Garcia, M.S. Garcia, J.M. Vilarino, et al., MALDI-TOF to compare polysaccharide profiles from commercial health supplements of different mushroom species, Food Chem., 199 (2016) 597-604. http://doi.org/10.1016/j.foodchem.2015.12.016
    K. Hachem, C. Faugeron, M. Kaid-Harche, et al., Structural investigation of cell wall xylan polysaccharides from the leaves of Algerian Argania spinosa, Molecules, 21 (2016) 1587. http://doi.org/10.3390/molecules21111587
    A. Shubhakar, R.P. Kozak, K.R. Reiding, et al., Automated high-throughput permethylation for glycosylation analysis of biologics using MALDI-TOF-MS, Anal. Chem., 88 (2016) 8562-8569. http://doi.org/10.1021/acs.analchem.6b01639
    W. Gao, H. Li, Y. Liu, et al., Rapid and sensitive analysis of N-glycans by MALDI-MS using permanent charge derivatization and methylamidation, Talanta, 161 (2016) 554-559. http://doi.org/10.1016/j.talanta.2016.09.004
    L.L. Qu, Y.M. Jiang, X.Y. Huang, et al., High-throughput monitoring of multiclass syrup adulterants in honey based on the oligosaccharide and polysaccharide profiles by MALDI mass spectrometry, J. Agric. Food Chem. 67, (2019) 11256−11261. http://doi.org/10.1021/acs.jafc.9b05317
    Z.Y. Yang, D.T. Wu, C.W. Chen, et al., Preparation of xylooligosaccharides from xylan by controlled acid hydrolysis and fast protein liquid chromatography coupled with refractive index detection, Sep. Purif. Technol., 171 (2016) 151-156. http://doi.org/10.1016/j.seppur.2016.06.051
    D.T. Wu, K.L. Cheong, L.Y. Wang, et al., Characterization and discrimination of polysaccharides from different species of Cordyceps using saccharide mapping based on PACE and HPTLC, Carbohydr. Polym., 103 (2014) 100-109. http://doi.org/10.1016/j.carbpol.2013.12.034
    K.L. Cheong, J. Li, J. Zhao, et al., A simple analysis of fructooligosaccharides in two medicinal plants by high-performance thin-layer chromatography, JPC-J. Planar Chromatogr. - Mod. TLC, 27 (2014) 245-250. http://doi.org/10.1556/JPC.27.2014.4.2
    H. Yang, J. Wang, F. Song, et al., Isoliquiritigenin (4,2',4'-trihydroxychalcone): a new matrix-assisted laser desorption/ionization matrix with outstanding properties for the analysis of neutral oligosaccharides, Anal. Chim. Acta, 701 (2011) 45-51. http://doi.org/10.1016/j.aca.2011.05.051
    D.T. Wu, L.Z. Meng, L.Y. Wang, et al., Chain conformation and immunomodulatory activity of a hyperbranched polysaccharide from Cordyceps sinensis, Carbohydr. Polym., 110 (2014) 405-414. http://doi.org/10.1016/j.carbpol.2014.04.044
    J. Zhao, S.P. Li, J. Yang, et al., Quality evaluation of different products derived from Ganoderma, J. Med. Plant, 6 (2012) 1969-1974. http://doi.org/10.5897/JMPR11.1668
    I.N. Urakova, O.N. Pozharitskaya, A.N. Shikov, et al., Comparison of high performance TLC and HPLC for separation and quantification of chlorogenic acid in green coffee bean extracts, J. Sep. Sci., 31 (2008) 237-241. http://doi.org/10.1002/jssc.200700472
    A. Reis, M.R.M. Domingues, A.J. Ferrer-Correia, et al., Structural characterisation by MALDI-MS of olive xylo-oligosaccharides obtained by partial acid hydrolysis, Carbohydr. Polym., 53 (2003) 101-107. http://doi.org/10.1016/s0144-8617(03)00007-9
    Y. Nakahara, K. Yamauchi, S. Saka, MALDI-TOF/MS analyses of decomposition behavior of beech xylan as treated by semi-flow hot-compressed water, J. Wood Sci., 60 (2014) 225-231. http://doi.org/10.1007/s10086-014-1396-0
    T. Ohbuchi, T. Takahashi, N. Azumi, et al., Structual analysis of neutral and acidic xylooligosaccharides from hardwood kraft pulp, and their utilization by intestinal bacteria in vitro, Biosci. Biotech. Bioch., 73 (2009) 2070-2076. http://doi.org/10.1271/bbb.90260
    J.E. Araujo, S. Jorge, R. Magrico, et al., Classifying patients in peritoneal dialysis by mass spectrometry-based profiling, Talanta, 152 (2016) 364-370. http://doi.org/10.1016/j.talanta.2016.02.026
    V. Kumar, T. Satyanarayana, Applicability of thermo-alkali-stable and cellulase-free xylanase from a novel thermo-halo-alkaliphilic Bacillus halodurans in producing xylooligosaccharides, Biotechnol. Letter, 33 (2011) 2279. http://doi.org/10.1007/s10529-011-0698-1
    C. Moulis, G. Joucla, D. Harrison, et al., Understanding the polymerization mechanism of glycoside-hydrolase family 70 glucansucrases, J. Biol. Chem., 281 (2006) 31254-31267. http://doi.org/10.1074/jbc.M604850200
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (172) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return