Citation: | Barbara Bojko, Nikita Looby, Mariola Olkowicz, Anna Roszkowska, Bogumiła Kupcewicz, Pedro Reck dos Santos, Khaled Ramadan, Shaf Keshavjee, Thomas K. Waddell, German Gómez-Ríos, Marcos Tascon, Krzysztof Goryński, Marcelo Cypel, Janusz Pawliszyn. Solid phase microextraction chemical biopsy tool for monitoring of doxorubicin residue during in vivo lung chemo-perfusion[J]. Journal of Pharmaceutical Analysis, 2021, 11(1): 37-47. doi: 10.1016/j.jpha.2020.08.011 |
U. Pastorino, P. McCormack, R. Ginsberg, A new staging proposal for pulmonary metastases: Results of analysis of 5206 cases of resected pulmonary metastases., Chest Surg. Clin. N. Am. 8 (1998)197-202
|
P. Reck Dos Santos, J. Sakamoto, M. Chen, et al., Modified in Vivo Lung Perfusion for Local Chemotherapy: A Preclinical Study with Doxorubicin, Ann. Thorac. Surg. 101 (2016) 2132-2140. https://doi.org/10.1016/j.athoracsur.2015.12.043
|
M. Cypel, M. Liu, M. Rubacha, et al., Functional repair of human donor lungs by IL-10 gene therapy, Sci. Transl. Med. 1 (2009) 4ra9. https://doi.org/10.1126/scitranslmed.3000266
|
M. Cypel, J.C. Yeung, M. Liu, et al., Normothermic Ex Vivo Lung Perfusion in Clinical Lung Transplantation, N. Engl. J. Med. 364 (2011) 1431-1440. https://doi.org/10.1056/NEJMoa1014597
|
P.R. Dos Santos, I. Iskender, T. MacHuca, et al., Modified in vivo lung perfusion allows for prolonged perfusion without acute lung injury, J. Thorac. Cardiovasc. Surg. 147 (2014) 774-782. https://doi.org/10.1016/j.jtcvs.2013.10.009
|
A. Kummerle, T. Krueger, M. Dusmet, et al. A validated assay for measuring doxorubicin in biological fluids and tissues in an isolated lung perfusion model: Matrix effect and heparin interference strongly influence doxorubicin measurements, J. Pharm. Biomed. Anal. 33 (2003) 475-494. https://doi.org/10.1016/S0731-7085(03)00300-5
|
J.R. Everett, From metabonomics to pharmacometabonomics: The role of metabolic profiling in personalized medicine, Front. Pharmacol. 7 (2016) 287. https://doi.org/10.3389/fphar.2016.00297
|
E. Cudjoe, B. Bojko, P. Togunde, et. al., In vivo solid-phase microextraction for tissue bioanalysis, Bioanalysis. 4 (2012) 2557-2561. https://doi.org/10.4155/bio.12.250
|
B. Bojko, K. Gorynski, G.A. Gomez-Rios, et al., Low invasive in vivo tissue sampling for monitoring biomarkers and drugs during surgery., Lab. Invest. 94 (2014) 586-594. https://doi.org/10.1038/labinvest.2014.44
|
G. Ouyang, D. Vuckovic, J. Pawliszyn, Nondestructive sampling of living systems using in vivo solid-phase microextraction, Chem. Rev. 111 (2011) 2784-2814. https://doi.org/10.1021/cr100203t
|
D. Vuckovic, I. De Lannoy, B. Gien, et al., In vivo solid-phase microextraction: Capturing the elusive portion of metabolome, Angew. Chemie - Int. Ed. 50 (2011) 5344-5348. https://doi.org/10.1002/anie.201006715
|
S. Lendor, S.A. Hassani, E. Boyaci, et al., Solid Phase Microextraction-Based Miniaturized Probe and Protocol for Extraction of Neurotransmitters from Brains in Vivo, Anal. Chem. 91 (2019) 4896-4905. https://doi.org/10.1021/acs.analchem.9b00995
|
D. Vuckovic, J. Pawliszyn, Systematic evaluation of solid-phase microextraction coatings for untargeted metabolomic profiling of biological fluids by liquid chromatography-mass spectrometry, Anal. Chem. 83 (2011) 2944-2954. https://doi.org/10.1021/ac102614v
|
B. Bojko, N. Reyes-Garce´s, V. Bessonneau, et al., Solid-phase microextraction in metabolomics, TrAC - Trends Anal. Chem. 61 (2014) 168-180. https://doi.org/10.1016/j.trac.2014.07.005
|
N. Reyes-Garces, E. Gionfriddo, G.A. Gomez-Rios, et al., Advances in Solid Phase Microextraction and Perspective on Future Directions, Anal. Chem. 90 (2018) 302-360. https://doi.org/10.1021/acs.analchem.7b04502
|
B. Bojko, J. Pawliszyn, In vivo and ex vivo SPME: A low invasive sampling and sample preparation tool in clinical bioanalysis, Bioanalysis. 6 (2014) 1227-1239. https://doi.org/10.4155/BIO.14.91
|
M. Huq, M. Tascon, E. Nazdrajic, et al., Measurement of free drug concentration from biological tissue by Solid-phase Microextraction: In-Silico and Experimental Study, Anal. Chem. 91 (2019) 7719-7728. https://doi.org/10.1021/acs.analchem.9b00983
|
E.R. St John, J. Balog, J.S. McKenzie, et al., Rapid evaporative ionisation mass spectrometry of electrosurgical vapours for the identification of breast pathology: Towards an intelligent knife for breast cancer surgery, Breast Cancer Res. 19 (2017) 59. https://doi.org/10.1186/s13058-017-0845-2
|
J. Zhang, J. Rector, J.Q. Lin, et al., Nondestructive tissue analysis for ex vivo and in vivo cancer diagnosis using a handheld mass spectrometry system, Sci. Transl. Med. 9 (2017) eaan3968. https://doi.org/10.1126/scitranslmed.aan3968
|
P. Saudemont, J. Quanico, Y.M. Robin, et al., Real-Time Molecular Diagnosis of Tumors Using Water-Assisted Laser Desorption/Ionization Mass Spectrometry Technology, Cancer Cell. 34 (2018) 840-851.e4. https://doi.org/10.1016/j.ccell.2018.09.009
|
K.A. Rodvold, W.W. Hope, S.E. Boyd, Considerations for effect site pharmacokinetics to estimate drug exposure: concentrations of antibiotics in the lung, Curr. Opin. Pharmacol. 36 (2017) 114-123. https://doi.org/10.1016/j.coph.2017.09.019
|
A. Roszkowska, M. Tascon, B. Bojko, et al., Equilibrium ex vivo calibration of homogenized tissue for in vivo SPME quantitation of doxorubicin in lung tissue, Talanta. 183 (2018) 304-310. https://doi.org/10.1016/j.talanta.2018.02.049
|
A. Kirpich, E.A. Ainsworth, J.M. Wedow, et al., Variable selection in omics data: A practical evaluation of small sample sizes, PLoS One. 13 (2018) e0197910. https://doi.org/10.1371/journal.pone.0197910
|
M. Tascon, M.N. Alam, G.A. Gomez-Rios, et al., Development of a Microfluidic Open Interface with Flow Isolated Desorption Volume for the Direct Coupling of SPME Devices to Mass Spectrometry, Anal. Chem. 90 (2018) 2631-2638. https://doi.org/10.1021/acs.analchem.7b04295
|
G.A. Gomez-Rios, C. Liu, M. Tascon, et al., Open Port Probe Sampling Interface for the Direct Coupling of Biocompatible Solid-Phase Microextraction to Atmospheric Pressure Ionization Mass Spectrometry, Anal. Chem. 89 (2017) 3805-3809. https://doi.org/10.1021/acs.analchem.6b04737
|
O. Tacar, P. Sriamornsak, C.R. Dass, Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems, J. Pharm. Pharmacol. 65 (2013) 157-170. https://doi.org/10.1111/j.2042-7158.2012.01567.x
|
O. Tacar, P. Sriamornsak, C.R. Dass, Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems, J. Pharm. Pharmacol. 65 (2013) 157-170. https://doi.org/10.1111/j.2042-7158.2012.01567.x
|
S.N. Hilmer, V.C. Cogger, M. Muller, et al., The hepatic pharmacokinetics of doxorubicin and liposomal doxorubicin, Drug Metab. Dispos. 32 (2004) 794-799. https://doi.org/10.1124/dmd.32.8.794
|
D. Vuckovic, X. Zhang, E. Cudjoe, et al., Solid-phase microextraction in bioanalysis: New devices and directions, J. Chromatogr. A. 1217 (2010) 4041-4060. https://doi.org/10.1016/j.chroma.2009.11.061
|
A. Napylov, N. Reyes-Garces, G. Gomez-Rios, et al., In Vivo Solid-Phase Microextraction for Sampling of Oxylipins in Brain of Awake, Moving Rats, Angew. Chemie - Int. Ed. 59 (2020) 2392-2398. https://doi.org/10.1002/anie.201909430
|
K. Brink-Jensen, C. Ekstroem, Inference for feature selection using the Lasso with high-dimensional data. (2014). arXiv:1403.4296v1 https://arxiv.org/abs/1403.4296
|
G. Heinze, C. Wallish, D. Dunkler, Variable selection - A review and recommendations for the practicing statistitian, Biometrical J. 60 (2018) 431-449
|
T.W.H. Li, Q. Zhang, P. Oh,et al., S-Adenosylmethionine and Methylthioadenosine Inhibit Cellular FLICE Inhibitory Protein Expression and Induce Apoptosis in Colon Cancer Cells, Mol. Pharmacol. 76 (2009) 192-200. https://doi.org/10.1124/mol.108.054411
|
E. Ansorena, E.R. Garcia-Trevijano, M.L. Martinez-Chantar, et al., S-adenosylmethionine and methylthioadenosine are antiapoptotic in cultured rat hepatocytes but proapoptotic in human hepatoma cells, Hepatology. 35 (2002) 274-280. https://doi.org/10.1053/jhep.2002.30419
|
E. Bigaud, F.J. Corrales, Methylthioadenosine (MTA) Regulates Liver Cells Proteome and Methylproteome: Implications in Liver Biology and Disease, Mol. Cell. Proteomics. 15 (2016) 1498-1510. https://doi.org/10.1074/mcp.m115.055772
|
S. Arunachalam, P.B. Tirupathi Pichiah, S. Achiraman, Doxorubicin treatment inhibits PPARγ and may induce lipotoxicity by mimicking a type 2 diabetes-like condition in rodent models, FEBS Lett. 587 (2013) 105-110. https://doi.org/10.1016/j.febslet.2012.11.019
|
I.N. Todor, N.Y. Lukyanova, V.F. Chekhun, The lipid content of cisplatin- and doxorubicin-resistant MCF-7 human breast cancer cells, Exp. Oncol. 34 (2012) 97-100
|
D. Cheneval, M. Muller, R. Toni, et al. Adriamycin as a probe for the transversal distribution of cardiolipin in the inner mitochondrial membrane, J. Biol. Chem. 260 (1985) 13003-13007
|
M.A. Parker, V. King, K.P. Howard, Nuclear magnetic resonance study of doxorubicin binding to cardiolipin containing magnetically oriented phospholipid bilayers, Biochim. Biophys. Acta - Biomembr. 1514 (2001) 206-216. https://doi.org/10.1016/S0005-2736(01)00371-6
|
S. Bamji-Stocke, V. van Berkel, D.M. Miller, et al., A review of metabolism-associated biomarkers in lung cancer diagnosis and treatment, Metabolomics. 14 (2018) 81. https://doi.org/10.1007/s11306-018-1376-2
|
E.A. Mathe, A.D. Patterson, M. Haznadar, et al., Noninvasive urinary metabolomic profiling identifies diagnostic and prognostic markers in lung cancer, Cancer Res. 74 (2014) 3259-3270. https://doi.org/10.1158/0008-5472.CAN-14-0109
|
M. Haznadar, Q. Cai, K.W. Krausz, et al., Urinary metabolite risk biomarkers of lung cancer: A prospective cohort study, Cancer Epidemiol. Biomarkers Prev. 25 (2016) 978-986. https://doi.org/10.1158/1055-9965.EPI-15-1191
|