Citation: | Zhe Wang, Fan Zhang, Wei Liu, Ning Sheng, Hua Sun, Jinlan Zhang. Impaired tricarboxylic acid cycle flux and mitochondrial aerobic respiration during isoproterenol induced myocardial ischemia is rescued by bilobalide[J]. Journal of Pharmaceutical Analysis, 2021, 11(6): 764-775. doi: 10.1016/j.jpha.2020.08.008 |
P. C. Rezende, F. F. Ribas, J. C. V. Serrano, et al., Clinical significance of chronic myocardial ischemia in coronary artery disease patients, J. Thorac. Dis. 11(2019) 1005-1015
|
R. R. Aguiar, D. F. Vale, R. M. Silva, et al., A possible relationship between gluconeogenesis and glycogen metabolism in rabbits during myocardial ischemia, An. Acad. Bras. Cienc. 89 (2017) 1683-1690
|
Q. Liu, J. C. Docherty, J. C. Rendell, et al., High levels of fatty acids delay the recovery of intracellular pH and cardiac efficiency in post-ischemic hearts by inhibiting glucose oxidation, J. Am. Coll. Cardiol. 39 (2002) 718-725
|
G. M. Rosano, M. Fini, G. Caminiti, Cardiac metabolism in myocardial ischemia. Curr. Pharm. Des. 14 (2008) 2551-2562
|
G. D. Lopaschuk, Metabolic modulators in heart disease: past, present, and future, Can. J. Cardiol. 33 (2017) 838-849
|
B. S. Kalra, V. Roy, Efficacy of metabolic modulators in ischemic heart disease: an overview, J. Clin. Pharmacol. 52 (2012) 292-305
|
H. Brunengraber, C. R. Roe, Anaplerotic molecules: current and future. J. Inherit. Metab, Dis. 29 (2006) 327-331
|
G. Czibik, V. Steeples, A. Yavari, et al., Citric acid cycle intermediates in cardioprotection, Circ. Cardiovasc. Genet. 7 (2014) 711-719
|
J. Tian, Y. Liu, K. Chen. Ginkgo biloba extract in vascular protection: molecular mechanisms and clinical applications, Curr. Vasc. Pharmacol. 15 (2017) 532-548
|
P. Allawadhi, A. Khurana, N. Sayed, et al., Isoproterenol-induced cardiac ischemia and fibrosis: Plant-based approaches for intervention, Phytother. Res. 32 (2018) 1908-1932
|
Z. Wang, J. L. Zhang, T. K. Ren, et al., Targeted metabolomic profiling of cardioprotective effect of Ginkgo biloba L. extract on myocardial ischemia in rats, Phytomedicine 23 (2016) 621-631
|
M. R. Antoniewicz, Methods and advances in metabolic flux analysis: a mini-review, J. Ind. Microbiol. Biotechnol. 42 (2015) 317-325
|
M. R. Antoniewicz. A guide to 13 C metabolic flux analysis for the cancer biologist, Exp. Mol. Med. 50 (2018) 1-13
|
D. T. H. Leung, S. Chu., Measurement of oxidative stress: mitochondrial function using the seahorse system, Preeclampsia, Humana Press, New York, 2018, pp. 285-293
|
C. J. Halbrook, C. Pontious, I. Kovalenko, et al., Macrophage-released pyrimidines inhibit gemcitabine therapy in pancreatic cancer, Cell Metab. 29 (2019) 1390-1399. e6
|
J. R. Molina, Y. Sun, M. Protopopova, et al., An inhibitor of oxidative phosphorylation exploits cancer vulnerability, Nat. Med.24(2018) 1036-1046
|
D. Menon, R. Coll, L. A. O'Neill, et al., GSTO1-1 modulates metabolism in macrophages activated through the LPS and TLR4 pathway, J. Cell Sci. 128 (2015) 1982-1990
|
K. D. Courtney, D. Bezwada, T. Mashimo, et al., Isotope tracing of human clear cell renal cell carcinomas demonstrates suppressed glucose oxidation in vivo, Cell Metab. 28 (2018) 793-800. e2
|
D. Janssens, E. Delaive, J. Remacle, et al., Protection by bilobalide of the ischaemia-induced alterations of the mitochondrial respiratory activity, Fund. Clin. Pharmacol. 14 (2000) 193-201
|
T. M. Schwarzkopf, K. A. Koch, J. Klein, Neurodegeneration after transient brain ischemia in aged mice: Beneficial effects of bilobalide, Brain Res. 1529 (2013) 178-187
|
F. Tchantchou, P. N. Lacor, Z. Cao, et al., Stimulation of Neurogenesis and Synaptogenesis by Bilobalide and Quercetin via Common Final Pathway in Hippocampal Neurons, J. Alzheimers. Dis. 118 (2009) 787-798
|
F. V. Defeudis, Bilobalide and neuroprotection, Pharmacol. Res. 46 (2002) 565-568
|
Z. Feng, Q. Sun, W. Chen, et al., The neuroprotective mechanisms of ginkgolides and bilobalide in cerebral ischemic injury: a literature review, Mol. Med. 25 (2019) 1-8
|
H. Kahles, M. M. Gebhard, V. A. Mezger, et al., The role of ATP and lactic acid for mitochondrial function during myocardial ischemia, Basic Res. Cardiol. 74 (1979) 611-620
|