Citation: | Yuan Hong, Xiaoyan Liao, Zilin Chen. Determination of bioactive components in the fruits of Cercis chinensis Bunge by HPLC-MS/MS and quality evaluation by principal components and hierarchical cluster analyses[J]. Journal of Pharmaceutical Analysis, 2021, 11(4): 465-471. doi: 10.1016/j.jpha.2020.07.010 |
Y. Li, D.M. Zhang, S.S. Yu, A new stilbene from Cercis chinensis Bunge, J. Integr. Plant Biol. 47 (2005) 1021-1024
|
J.T. Wang, Antibacteral activity and antioxidant activity in vivo of red pigment from flowers of Cercis chinensis Bge, Food Sci. Technol. 36 (2011) 238-241, 250
|
Y. Chen, Flavonoids extracted from Cercis chinensis Bunge fruit with an orthogonal test and its antioxidant, J. Shandong Agric. Univ. (Nat. Sci. Ed.) 47 (2016) 43-46
|
C. Rakers, S.M. Schwerdtfeger, J. Mortier, et al., Inhibitory potency of flavonoid derivatives on influenza virus neuraminidase, Bioorg. Med. Chem. Lett 24 (2014) 4312-4317
|
J.K. Zhang, Y.P. Wu, X.Y. Zhao, et al., Chemopreventive effect of flavonoids from Ougan (Citrus reticulata cv. Suavissima) fruit against cancer cell proliferation and migration, J. Funct. Foods 10 (2014) 511-519
|
L. Chen, H. Teng, Z. Jia, et al., Intracellular signaling pathways of inflammation modulated by dietary flavonoids: the most recent evidence, Crit. Rev. Food Sci. 58 (2018) 2908-2924
|
R.V. Patel, B.M. Mistry, S.K. Shinde, et al., Therapeutic potential of quercetin as a cardiovascular agent, Eur. J. Med. Chem. 155 (2018) 889-904
|
J.Y. Yeon, Y.J. Bae, E.Y. Kim, et al., Association between flavonoid intake and diabetes risk among the Koreans, Clin. Chim. Acta 439 (2015) 225-230
|
P. Maher, The potential of flavonoids for the treatment of neurodegenerative diseases, Int. J. Mol. Sci. 20 (2019) 3056-3074
|
X.Y. Liao, F.L. Hu, Z.L. Chen, Identification and quantitation of the bioactive components in Osmanthus fragrans fruits by HPLC-ESI-MS/MS, J. Agric. Food Chem. 66 (2018) 359-367
|
X.X. Wen, K.D. Luo, S. Xiao, et al., Qualitative analysis of chemical constituents in traditional Chinese medicine analogous formula cheng-Qi decoctions by liquid chromatography-mass spectrometry, Biomed. Chromatogr. 30 (2016) 301-311
|
A.G. Newsome, Y.C. Li, R.B. van Breemen, Improved quantification of free and ester-bound gallic acid in foods and beverages by UHPLC-MS/MS, J. Agric. Food Chem. 64 (2016) 1326-1334
|
R.C. Chiste, A.Z. Mercadante, Identification and quantification, by HPLC-DAD-MS/MS, of carotenoids and phenolic compounds from the Amazonian fruit Caryocar villosum, J. Agric. Food Chem. 60 (2012) 5884-5892
|
P. Miketova, K.H. Schram, J. Whitney, et al., Tandem mass spectrometry studies of green tea catechins. Identification of three minor components in the polyphenolic extract of green tea, J. Mass Spectrom. 35 (2000) 860-869
|
J. Hellstrom, J. Sinkkonen, M. Karonen, et al., Isolation and structure elucidation of procyanidin oligomers from saskatoon berries (Amelanchier alnifolia), J. Agric. Food Chem. 55 (2007) 157-164
|
L.W. Gu, M.A. Kelm, J.F. Hammerstone, et al., Screening of foods containing proanthocyanidins and their structural characterization using LC-MS/MS and thiolytic degradation, J. Agric. Food Chem. 51 (2003) 7513-7521
|
D.B. Silva, I.C.C. Turatti, D.R. Gouveia, et al., Mass spectrometry of flavonoid vicenin-2, based sunlight barriers in Lychnophora species, Sci. Rep-UK 4 (2014) 4309-4316
|
R. Pascale, G. Bianco, T.R.I. Cataldi, et al., Investigation of the effects of virgin olive oil cleaning systems on the secoiridoid aglycone content using high performance liquid chromatography-mass spectrometry, J. Am. Oil Chem. Soc. 95 (2018) 665-671
|
K. Ablajan, Z. Abliz, X.Y. Shang, et al., Structural characterization of flavonol 3,7-di-O-glycosides and determination of the glycosylation position by using negative ion electrospray ionization tandem mass spectrometry, J. Mass Spectrom. 41 (2006) 352-360
|
E. Hvattum, D. Ekeberg, Study of the collision-induced radical cleavage of flavonoid glycosides using negative electrospray ionization tandem quadrupole mass spectrometry, J. Mass Spectrom. 38 (2003) 43-49
|
D. Tsimogiannis, M. Samiotaki, G. Panayotou, et al., Characterization of flavonoid subgroups and hydroxy substitution by HPLC-MS/MS, Molecules 12 (2007) 593-606
|
X.F. Wang, X. Zhao, L.Q. Gu, et al., Simultaneous determination of five free and total flavonoids in rat plasma by ultra HPLC-MS/MS and its application to a comparative pharmacokinetic study in normal and hyperlipidemic rats, J. Chromatogr. B 953 (2014) 1-10
|
C. Zhao, Q.J. Shao, Z.Q. Ma, et al., Physical and chemical characterizations of corn stalk resulting from hydrogen peroxide presoaking prior to ammonia fiber expansion pretreatment, Ind. Crop. Prod. 83 (2016) 86-93
|
C. Zhao, X.L. Qiao, Q.J. Shao, et al., Synergistic effect of hydrogen peroxide and ammonia on lignin, Ind. Crop. Prod. 146 (2020) 112177-112184
|
N. Kahkeshani, F. Farzaei, M. Fotouhi, et al., Pharmacological effects of gallic acid in health and diseases: a mechanistic review, Iran. J. Basic Med. Sci. 22 (2019) 225-237
|
G. Zengin, E.J. Llorent-Martinez, K.I. Sinan, et al., Chemical profiling of Centaurea bornmuelleri Hausskn. aerial parts by HPLC-MS/MS and their pharmaceutical effects: from nature to novel perspectives, J. Pharmaceut. Biomed. 174 (2019) 406-413
|
F. Qiu, S. Wu, X.R. Lu, et al., Quality evaluation of the artemisinin-producing plant Artemisia annua L. based on simultaneous quantification of artemisinin and six synergistic components and hierarchical cluster analysis, Ind. Crop. Prod. 118 (2018) 131-141
|