Citation: | O. Sreekanth Reddy, M.C.S. Subha, T. Jithendra, C. Madhavi, K. Chowdoji Rao. Curcumin encapsulated dual cross linked sodium alginate/montmorillonite polymeric composite beads for controlled drug delivery[J]. Journal of Pharmaceutical Analysis, 2021, 11(2): 191-199. doi: 10.1016/j.jpha.2020.07.002 |
S. Ganguly, P.P. Maity, S. Mondal, et al., Polysaccharide and poly(methacrylic acid) based biodegradable elastomeric biocompatible semi-IPN hydrogel for controlled drug delivery, Mater. Sci. Eng. C 92 (2018) 34-51. https://doi.org/10.1016/j.msec.2018.06.034
|
K. Varaprasad, G.M. Raghavendra, T. Jayaramudu, et al., A mini review on hydrogels classification and recent developments in miscellaneous applications, Mater. Sci. Eng. C 79 (2017) 951-978. https://doi.org/10.1016/j.msec.2017.05.096
|
X. Sun, J. Shi, X. Xu, et al., Chitosan coated alginate/poly(N isopropylacrylamide) beads for dual responsive drug delivery, Int. J. Biol. Macromol. 59 (2013) 273-281. https://doi.org/10.1016/j.ijbiomac.2013.04.066
|
I. Constantinidis, S.C. Grant, S. Celper, et al., Non-invasive evaluation of alginate/poly-l-Lysine/Alginate microcapsules by magnetic resonance microscopy, Biomaterials. 28(15) (2007) 2438-2445. https://doi.org/10.1016/j.biomaterials.2007.01.012
|
M.I. Carretero, M. Pozo, Clay and non-clay minerals in the pharmaceutical industry: Part I. Excipients and medical applications, Appl. Clay Sci. 46 (2009) 73-80. https://doi.org/10.1016/j.clay.2009.07.017
|
S. Hua, H. Yang, A. Wang, A pH-sensitive nanocomposite microsphere based on chitosan and montmorillonite with in vitro reduction of the burst release effect, Drug Dev. Ind. Pharm. 36(9) (2010) 1106-1114. https://doi.org/10.3109/03639041003677798
|
R.I. Iliescu, E. Andronescu, C.D. Ghitulica, et al., Montmorillonite-alginate nanocomposite as a drug delivery system-incorporation and in vitro release of irinotecan, Int. J. Pharm. 463 (2014) 184-192. https://doi.org/10.1016/j.ijpharm.2013.08.043
|
J. Choy, S. Choi, J. Oh, et al., Clay minerals and layered double hydroxides for novel biological applications, Appl. Clay Sci. 36 (2007) 122-132. https://doi.org/10.1016/j.clay.2006.07.007
|
Y. Huang, Q. Tao, D. Hou, et al., A novel ion-exchange carrier based upon liposome-encapsulated montmorillonite for ophthalmic delivery of betaxolol hydrochloride, Int. J. Nanomed. 12 (2017) 1731-1745. https://dx.doi.org/10.2147%2FIJN.S122747
|
V.V. Krupskaya, S.V. Zakusin, E.A. Tyupina, et al., Experimental study of montmorillonite structure and transformation of its properties under treatment with inorganic acid solutions, Minerals. 7 (2017) 49-63. https://doi.org/10.3390/min7040049
|
T. Li, L. Zhao, Z. Zheng, et al., Design and preparation acid-activated montmorillonite sustained-release drug delivery system for dexibuprofen in vitro and in vivo evaluations, Appl. Clay Sci. 163 (2018) 178-185. https://doi.org/10.1016/j.clay.2018.07.026
|
V. Anand, R. Kandarapu, S. Garg, Ion-exchange resins: carrying drug delivery forward, Drug Discovery Today. 6 (2001) 905-914. https://doi.org/10.1016/S1359-6446(01)01922-5
|
C. Aguzzi, P. Cerezo, C. Viseras, et al., Use of clays as drug delivery systems: Possibilities and limitations, Appl. Clay Sci. 36 (2007) 22-36. https://doi.org/10.1016/j.clay.2006.06.015
|
K.M. Reddy, V.R. Babu, K.S.V.K. Rao, et al., Temperature Sensitive Semi-IPN Microspheres from Sodium Alginate and N-Isopropylacrylamide for Controlled Release of 5-Fluorouracil, J. Appl. Polym. Sci. 107 (2008) 2820-2829. https://doi.org/10.1002/app.27305
|
P.R.S. Reddy, K.M. Rao, K.S.V.K. Rao, et al., Synthesis of Alginate Based Silver Nanocomposite Hydrogels for Biomedical Applications, Macromol. Res. 22(8) (2014) 832-842. https://doi.org/10.1007/s13233-014-2117-7
|
T. Wu, J. Huang, Y. Jiang, et al., Formation of hydrogels based on chitosan/alginate for the delivery of lysozyme and their antibacterial activity, Food Chem. 240 (2017) 361-369. https://doi.org/10.1016/j.foodchem.2017.07.052
|
G.T. Grant, E.R. Morris, D.A. Rees, et al., Biological interactions between polysaccharides and divalent cations: The egg-box model, FEBS Lett. 32(1) (1973) 195-198. https://doi.org/10.1016/0014-5793(73)80770-7
|
N.M. Sanchez-Ballestera, I. Soulairola, B. Bernard, et al., Flexible heteroionic calcium-magnesium alginate beads for controlled drug release, Carbohydr. Polym. 207 (2019) 224-229. https://doi.org/10.1016/j.carbpol.2018.11.096
|
B.D. Kevadiya, G.V. Joshi, H.A. Patel, et al., Montmorillonite-Alginate Nanocomposites as a Drug Delivery System: Intercalation and In Vitro Release of Vitamin B1 and Vitamin B6, J. Biomater. Appl. 25(2) (2010) 161-177. https://doi.org/10.1177%2F0885328209344003
|
H. Bera, S.R. Ippagunta, S. Kumar, et al., Core-shell alginate-ghatti gum modified montmorillonite composite matrices for stomach-specific flurbiprofen delivery, Mater. Sci. Eng. C 76 (2017) 715-726. https://doi.org/10.1016/j.msec.2017.03.074
|
S. Jain, M. Datta, Montmorillonite-alginate microspheres as a delivery vehicle for oral extended release of Venlafaxine hydrochloride, J. Drug Deliv. Sci. Tec. 33 (2016) 149-156. https://doi.org/10.1016/j.jddst.2016.04.002
|
K.M. Rao, K.S.V.K. Rao, G. Ramanjaneyulu, et al., Curcumin encapsulated pH sensitive gelatin based interpenetrating polymeric network nanogels for anti cancer drug delivery, Int. J. Pharm. 478 (2015) 788-795. https://doi.org/10.1016/j.ijpharm.2014.12.001
|
E.S. Behbahani, M. Ghaedi, M. Abbaspour, et al., Curcumin loaded nanostructured lipid carriers: in vitro digestion and release studies, Polyhedron. 164 (2019) 113-122. https://doi.org/10.1016/j.poly.2019.02.002
|
J. Sun, C. Bi, H.M. Chan, et al., Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability, Colloids Surf. B. 111 (2013) 367-375. https://doi.org/10.1016/j.colsurfb.2013.06.032
|
H.W. Chen, H.C. Huang, Effect of curcumin on cell cycle progression and apoptosis in vascular smooth muscle cells. Br. J. Pharmacol. 124 (1998) 1029-1040. https://doi.org/10.1038/sj.bjp.0701914
|
S. Kar, B. Kundu, R.L. Reis, et al., Curcumin ameliorates the targeted delivery of methotrexate intercalated montmorillonite clay to cancer cells, Eur. J. Pharm. Sci. 135 (2019) 91-102. https://doi.org/10.1016/j.ejps.2019.05.006
|
H.H. Tonnesen, J. Karlsen, Studies on curcumin and curcuminoids. VI. Kinetics of curcumin degradation in aqueous solution, Z. Lebensm. Unters. Forsch. 180 (1985) 402-404. https://doi.org/10.1007/BF01027775
|
H.A. Patel, R.S. Somani, H.C. Bajaj, et al., Preparation and characterization of phosphonium montmorillonite with enhanced thermal stability, Appl. Clay Sci. 35 (2007) 194-200. https://doi.org/10.1016/j.clay.2006.09.012
|
R. Abdeen, N. Salahuddin, Modified Chitosan-Clay Nanocomposite as a Drug Delivery System Intercalation and In Vitro Release of Ibuprofen, J. Chem. 576370 (2013) 1-9. https://doi.org/10.1155/2013/576370
|
M.A. Guler, M.K. Gok, A.K. Figen, et al., Swelling, mechanical and mucoadhesion properties of Mt/starch-g-PMAA nanocomposite hydrogels, Appl. Clay Sci. 112-113 (2015) 44-52. https://doi.org/10.1016/j.clay.2015.04.019
|
X. Zheng, J. Dou, J. Yuan, et al., Removal of Cs+ from water and soil by ammonium-pillared montmorillonite/Fe3O4 composite, J. Environ. Sci. 56 (2007) 12-24. https://doi.org/10.1016/j.jes.2016.08.019
|
P. Del Gaudio, P. Colombo, G. Colombo, et al., Mechanisms of formation and disintegration of alginate beads obtained by prilling, Int. J. Pharm. 302(1-2) (2005) 1-9. https://doi.org/10.1016/j.ijpharm.2005.05.041
|
K.S.V.K. Rao, Ildoo Chung, K.M. Reddy, et al., PMMA-Based Microgels for Controlled Release of an Anticancer Drug, J. Appl. Polym. Sci. 111 (2009) 845-853. https://doi.org/10.1002/app.29057
|