Xiaoyan Liao, Yuan Hong, Zilin Chen. Identification and quantification of the bioactive components in Osmanthus fragrans roots by HPLC-MS/MS[J]. Journal of Pharmaceutical Analysis, 2021, 11(3): 299-307. doi: 10.1016/j.jpha.2020.06.010
Citation: Xiaoyan Liao, Yuan Hong, Zilin Chen. Identification and quantification of the bioactive components in Osmanthus fragrans roots by HPLC-MS/MS[J]. Journal of Pharmaceutical Analysis, 2021, 11(3): 299-307. doi: 10.1016/j.jpha.2020.06.010

Identification and quantification of the bioactive components in Osmanthus fragrans roots by HPLC-MS/MS

doi: 10.1016/j.jpha.2020.06.010
Funds:

This work was supported by the National Natural Science Foundation of China (Grant Nos. 81872828 and 81573384) and the Large-scale Instrument and Equipment Sharing Foundation of Wuhan University (LF20191065).

  • Received Date: Feb. 03, 2020
  • Accepted Date: Jun. 30, 2020
  • Rev Recd Date: Jun. 29, 2020
  • Available Online: Jan. 24, 2022
  • Publish Date: Jun. 15, 2021
  • The roots of O. fragrans are also a valuable resource in addition to its flowers and fruits. In this study, the HPLC-MS/MS method used for analyzing the chemical constituents in O. fragrans roots extract was developed, which showed high sensitivity for both qualitative and quantitative analyses. Thirty-two compounds were first discovered in O. fragrans roots, one compound of which was reported for the first time. The simultaneous determination method for acteoside, isoacteoside, oleuropein and phillyrin was validated to be sensitive and accurate. Then it was applied to determine the content of bioactive components in O. fragrans roots from different cultivars. The content of oleuropein and phillyrin in the twelve batches was relatively stable, while the content of acteoside and isoacteoside varied greatly. Moreover, the therapeutic material basis and mechanism of O. fragrans roots exerting its traditional pharmacodynamics were analyzed by network pharmacology. The results showed that O. fragrans roots might be effective for the treatment of inflammation, cardiovascular diseases, cancer, and rheumatoid arthritis, which is consistent with the traditional pharmacodynamics of O. fragrans roots. This work can provide an analytical method for the comprehensive development of O. fragrans roots.
  • X. Liao, F. Hu, Z. Chen, Identification and quantitation of the bioactive components in Osmanthus fragrans fruits by HPLC-ESI-MS/MS, J. Agric. Food Chem. 66 (2018) 359-367
    X. Liao, F. Hu, Z. Chen, A HPLC-MS method for profiling triterpenoid acids and triterpenoid esters in Osmanthus fragrans fruits, Analyst 144 (2019) 6981-6988
    M. Liu, X. Yang, X. Peng, et al, Studies on the chemical components of the roots of Osmanthus fragrans ‘Rixianggui’, HeCheng HuaXue 21 (2013) 306-308
    M. Huang, M. Liu, H. Xu, et al, Studies on the chemical components of the roots of Osmanthus fragrans ‘Rixianggui’(Ⅱ), HeCheng HuaXue 21 (2013) 689-691
    X. Zhang, Y. Qin, C. Zhang, et al, Studies on the chemical components of the roots of Osmanthus fragrans ‘Rixianggui’(III), HeCheng HuaXue 24 (2016) 728-731
    W. Yin, J. Liu, The flavonoids of chemical constituents of Osmanthus fragrans roots, ZhongYaoCai 39 (2016) 1550-1553
    S. Li, X. Bai, F. Zhou, et al, Studies on the analegesic and anti-inflammation effects of a new component from the roots of Osmanthus fragrans ‘Rixianggui’, ZhongYao Yaoli Yu LinChuang 32 (2016) 38-41
    H.Y. Xu, Y.Q. Zhang, Z.M. Liu, et al, ETCM: an encyclopaedia of traditional Chinese medicine, Nucleic Acids Res. 47 (2019) D976-D982
    D. Gfeller, O. Michielin, V. Zoete, Shaping the interaction landscape of bioactive molecules, Bioinformatics 29 (2013) 3073-3079
    D. Gfeller, A. Grosdidier, M. Wirth, et al, SwissTargetPrediction: a web server for target prediction of bioactive small molecules, Nucleic Acids Res. 42 (2014) 32-38
    J. Seebacher, A.C. Gavin, SnapShot: Protein-protein interaction networks, Cell 144 (2011) 1000-1000.e1
    Y. Shi, C. Wu, Y. Chen, et al, Comparative analysis of three Callicarpa herbs using high performance liquid chromatography with diode array detector and electrospray ionization-trap mass spectrometry method, J. Pharm. Biomed. Anal. 75 (2013) 239-247
    L. He, Y. Chen, Z. Liang, et al, A rapid and comprehensive quality assessing method of Yin-Qiao-Jie-Du tablets using UHPLC-QTOF-MS in combination with multivariate statistical analysis, J. Pharm. Biomed. Anal. 124 (2016) 129-137
    H. Li, W. Yao, Q. Liu, et al, Application of UHPLC-ESI-Q-TOF-MS to identify multiple constituents in processed products of the herbal medicine Ligustri Lucidi Fructus, Molecules 22 (2017) 689-702
    L. Fu, H. Ding, L. Han, et al, Simultaneously targeted and untargeted multicomponent characterization of Erzhi Pill by offline two-dimensional liquid chromatography/quadrupole-Orbitrap mass spectrometry, J. Chromatogr. A 1584 (2019) 87-96
    J. Liu, S. Nakamura, B. Xu, et al, Chemical structures of constituents from the flowers of Osmanthus fragrans var. aurantiacus, J. Nat. Med. 69 (2015) 135-141
    K. Machida, E. Matsuoka, M. Kikuchi, Structural revision of oleoacteoside and oleoechinacoside, Nat. Prod. Res. 24 (2010) 737-742
    R. Pascale, G. Bianco, T.R.I. Cataldi, et al, Investigation of the effects of virgin olive oil cleaning systems on the secoiridoid aglycone content using high performance liquid chromatography-mass spectrometry, J. Am. Oil. Chem. Soc. 95 (2018) 665-671
    A. Eyles, W. Jones, K. Riedl, et al, Comparative phloem chemistry of Manchurian (Fraxinus mandshurica) and two north American Ash species (Fraxinus americana and Fraxinus pennsylvanica), J. Chem. Ecol. 33 (2007) 1430-1448
    S. Ammar, M.d.M. Contreras, B. Gargouri, et al, RP-HPLC-DAD-ESI-QTOF-MS based metabolic profiling of the potential Olea europaea by-product “wood” and its comparison with leaf counterpart, Phytochem. Analysis 28 (2017) 217-229
    A. Ben Mansour, E.A. Porter, G.C. Kite, et al, Phenolic profile characterization of Chemlali olive stones by liquid chromatography-ion trap mass spectrometry, J. Agric. Food Chem. 63 (2015) 1990-1995
    C. Gousiadou, T. Kokubun, J. Martins, et al, Iridoid glucosides in the endemic Picconia azorica (Oleaceae), Phytochemistry 115 (2015) 171-174
    T. Michel, I. Khlif, P. Kanakis, et al, UHPLC-DAD-FLD and UHPLC-HRMS/MS based metabolic profiling and characterization of different Olea europaea organs of Koroneiki and Chetoui varieties, Phytochem. Lett. 11 (2015) 424-439
    N. Talhaoui, T. Vezza, A.M. Gomez-Caravaca, et al, Phenolic compounds and in vitro immunomodulatory properties of three Andalusian olive leaf extracts, J. Funct. Foods 22 (2016) 270-277
    R. Garcia-Villalba, F.A. Tomas-Barberan, P. Fanca-Berthon, et al, Targeted and untargeted metabolomics to explore the bioavailability of the secoiridoids from a seed/fruit extract (Fraxinus angustifolia Vahl) in human healthy volunteers: a preliminary study, Molecules 20 (2015) 22202-22219
    A. Ricci, A. Fiorentino, S. Piccolella, et al, Furofuranic glycosylated lignans: a gas-phase ion chemistry investigation by tandem mass spectrometry, Rapid Commun. Mass Spectrom. 22 (2008) 3382-3392
    M. Zhou, M. Xu, X. Ma, et al, Antiviral triterpenoid saponins from the roots of Ilex asprella, Planta. Medica. 78 (2012) 1702-1705
    S. Sun, S. Xu, Y. Yan, et al, Optimized high performance liquid chromatography tandem chemiluminescent detector applied to assess the antioxidative activity of Caulis Stauntoniae assisted by chemometrics, Anal. Methods 5 (2013) 1837-1842
    Y. Song, Q. Song, J. Li, et al, An integrated strategy to quantitatively differentiate chemome between Cistanche deserticola and C. tubulosa using high performance liquid chromatography-hybrid triple quadrupole-linear ion trap mass spectrometry, J. Chromatogr. A 1429 (2016) 238-247
    A. Fiorentino, A. Ricci, B. D'Abrosca, et al, Potential food additives from Carex distachya roots: identification and in vitro antioxidant properties, J. Agric. Food Chem. 56 (2008) 8218-8225
    D.G. Lee, S.M. Lee, M.H. Bang, et al, Lignans from the flowers of Osmanthus fragrans var. aurantiacus and their inhibition effect on NO production, Arch. Pharm. Res. 34 (2011) 2029-2035
    J. Jiao, Q. Gai, M. Luo, et al, Comparison of main bioactive compounds in tea infusions with different seasonal Forsythia suspensa leaves by liquid chromatography-tandem mass spectrometry and evaluation of antioxidant activity, Food Res. Int. 53 (2013) 857-863
    M. Sanz, B.F.d. Simon, E. Cadahia, et al, LC-DAD/ESI-MS/MS study of phenolic compounds in ash (Fraxinus excelsior L. and F. americana L.) heartwood. Effect of toasting intensity at cooperage, J. Mass Spectrom. 47 (2012) 905-918
    M. He, J. Jia, J. Li, et al, Application of characteristic ion filtering with ultra-high performance liquid chromatography quadrupole time of flight tandem mass spectrometry for rapid detection and identification of chemical profiling in Eucommia ulmoides Oliv, J. Chromatogr. A 1554 (2018) 81-91
    S. Salido, M. Perez-Bonilla, R.P. Adams, et al, Phenolic components and antioxidant activity of wood extracts from 10 main spanish Olive cultivars, J. Agric. Food Chem. 63 (2015) 6493-6500
    A. Ricci, A. Fiorentino, S. Piccolella, et al, Structural discrimination of isomeric tetrahydrofuran lignan glucosides by tandem mass spectrometry, Rapid Commun. Mass Spectrom. 24 (2010) 979-985
    Y.T. Wu, T.R. Tsai, L.C. Lin, et al, Liquid chromatographic method with amperometric detection to determine acteoside in rat blood and brain microdialysates and its application to pharmacokinetic study, J. Chromatogr. B 853 (2007) 281-286
    F. Al-Rimawi, Development and validation of a simple reversed-phase HPLC-UV method for determination of oleuropein in olive leaves, J. Food Drug Anal. 22 (2014) 285-289
    M.D. Delgado-Povedano, F. Priego-Capote, M.D. Luque de Castro, Selective ultrasound-enhanced enzymatic hydrolysis of oleuropein to its aglycon in olive (Olea europaea L.) leaf extracts, Food Chem. 220 (2017) 282-288
    W. Zhou, J. Shan, W. Ju, et al, Simultaneous determination of twenty-six components of Flos Lonicerae japonicae-Fructus Forsythiae herb couple using UPLC-ESI-MS/MS: application to its preparations, Anal. Methods 7 (2015) 1425-1437
  • Relative Articles

  • Cited by

    Periodical cited type(27)

    1. Cui, X., Hu, Z., Li, R. et al. CA IX-targeted Ag2S quantum dots bioprobe for NIR-II imaging-guided hypoxia tumor chemo-photothermal therapy. Journal of Pharmaceutical Analysis, 2024, 14(6): 100969. doi:10.1016/j.jpha.2024.100969
    2. Liu, W.-W., Dong, H.-J., Zhang, Z. et al. Analyzing chemical composition of Sargentodoxae caulis water extract and their hypouricemia effect in hyperuricemic mice. Fitoterapia, 2024. doi:10.1016/j.fitote.2024.105926
    3. Huang, C., Teng, J., Liu, W. et al. Modulation of macrophages by a phillyrin-loaded thermosensitive hydrogel promotes skin wound healing in mice. Cytokine, 2024. doi:10.1016/j.cyto.2024.156556
    4. Lv, J., Du, Q., Shi, S. et al. Untargeted Metabolomics Based on UPLC-Q-Exactive-Orbitrap-MS/MS Revealed the Differences and Correlations between Different Parts of the Root of Paeonia lactiflora Pall. Molecules, 2024, 29(5): 992. doi:10.3390/molecules29050992
    5. Liu, S., Jin, X., Wang, R. et al. A metabolomics discrimination-based strategy for screening the antithrombin active markers of perilla seeds: A natural oil crop. Food Chemistry, 2024. doi:10.1016/j.foodchem.2023.137183
    6. Liu, Y., Han, X., Zhao, M. et al. Functional characterization of polyphenol oxidase OfPPO2 supports its involvement in parallel biosynthetic pathways of acteoside. Plant Journal, 2024. doi:10.1111/tpj.16807
    7. Luo, L.-Y., Xue, R., Wang, T.-G. et al. The ethanolic extract of Osmanthus fragrans var. thunbergii flowers ameliorates depressive-like behaviors of mice by modulating the serotonin system and suppressing neuroinflammation. Food Science and Nutrition, 2024. doi:10.1002/fsn3.4270
    8. Litewski, S., Koss-Mikołajczyk, I., Kusznierewicz, B. Comparative Analysis of Phytochemical Profiles and Selected Biological Activities of Various Morphological Parts of Ligustrum vulgare. Molecules, 2024, 29(2): 399. doi:10.3390/molecules29020399
    9. Tang, X., Teng, J., Lu, K. Phillyrin sensitizes lung cancer cells to ferroptosis through inhibiting FTH1/ SLC7A11 axis. International Journal of Clinical Pharmacology and Therapeutics, 2024, 62(1): 8-19. doi:10.5414/CP204475
    10. Feng, W., Teng, Y., Zhong, Q. et al. Biomimetic Grapefruit-Derived Extracellular Vesicles for Safe and Targeted Delivery of Sodium Thiosulfate against Vascular Calcification. ACS Nano, 2023, 17(24): 24773-24789. doi:10.1021/acsnano.3c05261
    11. Litewski, S., Mróz, M., Bartoszek, A. et al. Post-Chromatographic Derivatization Coupled with Mass Spectrometry as a Method of Profiling and Identification of Antioxidants; Ligustrum vulgare Phytocomplex as an Example. Molecules, 2023, 28(24): 8000. doi:10.3390/molecules28248000
    12. Lima, K., Malmir, M., Camões, S.P. et al. Quality, Safety and Biological Studies on Campylanthus glaber Aerial Parts. Pharmaceuticals, 2023, 16(10): 1373. doi:10.3390/ph16101373
    13. Rechek, H., Haouat, A., Pinto, D.C.G.A. et al. A Comparative Analysis between the Phenolic Content, Key Enzyme Inhibitory Potential, and Cytotoxic Activity of Arum italicum Miller in Two Different Organs. International Journal of Plant Biology, 2023, 14(2): 520-532. doi:10.3390/ijpb14020041
    14. Zeng, F., Zheng, C., Ge, W. et al. Regulatory function of the endogenous hormone in the germination process of quinoa seeds. Frontiers in Plant Science, 2023. doi:10.3389/fpls.2023.1322986
    15. Tong, J., Liu, H.-B., Liu, Y.-W. et al. Research on hypoglycemic activity of Osmanthus fragrans var. thunbergii extract. Yaoxue Xuebao, 2023, 58(3): 750-759. doi:10.16438/j.0513-4870.2022-1071
    16. Kato-Noguchi, H., Hamada, Y., Kojima, M. et al. Allelopathic Substances of Osmanthus spp. for Developing Sustainable Agriculture. Plants, 2023, 12(2): 376. doi:10.3390/plants12020376
    17. Huang, B., Wu, C., Hu, Y. et al. Osmanthus-Loaded PVP/PVA Hydrogel Inhibits the Proliferation and Migration of Oral Squamous Cell Carcinoma Cells CAL-27. Polymers, 2022, 14(24): 5399. doi:10.3390/polym14245399
    18. Karpitskiy, D.A., Bessonova, E.A., Kartsova, L.A. et al. Development of approach for flavonoid profiling of biotechnological raw materials Iris sibirica L. by HPLC with high-resolution tandem mass spectrometry. Phytochemical Analysis, 2022, 33(6): 869-878. doi:10.1002/pca.3135
    19. Fu, C.-C., Xu, F.-Y., Qian, Y.-C. et al. Secondary Metabolites of Osmanthus fragrans: Metabolism and Medicinal Value. Frontiers in Pharmacology, 2022. doi:10.3389/fphar.2022.922204
    20. Wang, B., Luan, F., Bao, Y. et al. Traditional uses, phytochemical constituents and pharmacological properties of Osmanthus fragrans: A review. Journal of Ethnopharmacology, 2022. doi:10.1016/j.jep.2022.115273
    21. Zhou, C., Lu, M., Cheng, J. et al. Review on the Pharmacological Properties of Phillyrin. Molecules, 2022, 27(12): 3670. doi:10.3390/molecules27123670
    22. Lv, D., Xu, J., Qi, M. et al. A strategy of screening and binding analysis of bioactive components from traditional Chinese medicine based on surface plasmon resonance biosensor. Journal of Pharmaceutical Analysis, 2022, 12(3): 500-508. doi:10.1016/j.jpha.2021.11.006
    23. Wu, L., Liu, J., Huang, W. et al. Exploration of Osmanthus fragrans Lour.'s composition, nutraceutical functions and applications. Food Chemistry, 2022. doi:10.1016/j.foodchem.2021.131853
    24. Chen, B., Xu, D., Li, Z. et al. Tissue Distribution, Excretion, and Interaction With Human Serum Albumin of Total Bioflavonoid Extract From Selaginella doederleinii. Frontiers in Pharmacology, 2022. doi:10.3389/fphar.2022.849110
    25. Zou, H., Yan, Z., Cheng, M. et al. Effects of Different Treatments on Softwood Cutting Survival and Rooting of Osmanthus fragrans. Forest Engineering, 2022, 38(3): 1-7. doi:10.16270/j.cnki.slgc.2022.03.001
    26. Zhou, H., Li, T., Li, B. Identification of Antioxidant Components and Tyrosinase Specific Inhibitors from Osmanthus fragrans Flower by Using Online UPLC-ABTS+·-assay and UF-LC-MS Technology. Science and Technology of Food Industry, 2022, 43(7): 67-79. doi:10.13386/j.issn1002-0306.2021070130
    27. Liu, Y., Liu, M., Zhao, J. et al. Microencapsulation of Osmanthus essential oil by interfacial polymerization: Optimization, characterization, release kinetics, and storage stability of essential oil from microcapsules. Journal of Food Science, 2021, 86(12): 5397-5408. doi:10.1111/1750-3841.15943

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 31.4 %FULLTEXT: 31.4 %META: 64.7 %META: 64.7 %PDF: 3.9 %PDF: 3.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.6 %其他: 9.6 %Bulgaria: 0.7 %Bulgaria: 0.7 %China: 63.6 %China: 63.6 %Hong Kong, China: 0.7 %Hong Kong, China: 0.7 %India: 0.9 %India: 0.9 %Seychelles: 2.0 %Seychelles: 2.0 %United States: 22.6 %United States: 22.6 %其他BulgariaChinaHong Kong, ChinaIndiaSeychellesUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (294) PDF downloads(18) Cited by(29)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return