Citation: | Jiangbo Song, Lian Liu, Kaige Hao, Shuang Mao, Yongxi Tang, Xiaoling Tong, Fangyin Dai. Resveratrol elongates the lifespan and improves antioxidant activity in the silkworm Bombyx mori[J]. Journal of Pharmaceutical Analysis, 2021, 11(3): 374-382. doi: 10.1016/j.jpha.2020.06.005 |
M. Takaoka, The phenolic substances of White Hellebore (Veratrum Grandiflorum Hoes. Fil.) I., Nippon Kagaku Kaishi 3 (1939) 1090-1100
|
S. Nonomura, H. Kanagawa, A. Makimoto, Chemical constituents of polygonaceous plants. I. Studies on the components of ko-jo-kon, Yakugaku Zasshi 83 (1963) 988-990
|
B.P. Hubbard, D.A. Sinclair, Small molecule SIRT1 activators for the treatment of aging and age-related diseases, Trends Pharmacol. Sci. 35 (2014) 146-154
|
E.H. Siemann, L.L. Creasy, Concentration of the phytoalexin resveratrol in wine, Am. J. Enoi. Vitic. 43 (1992) 49-52
|
B.L. Liu, X. Zhang, W. Zhang, et al., New enlightenment of French Paradox: resveratrol’s potential for cancer chemoprevention and anti-cancer therapy, Cancer Biol. Ther. 6 (2007) 1833-1836
|
M. Jang, L. Cai, G.O. Udeani, et al., Cancer chemopreventive activity of resveratrol, a natural product derived from grapes, Science 275 (1997) 218-220
|
T.M. Bass, D. Weinkove, K. Houthoofd, et al., Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans, Mech. Ageing Dev. 128 (2007) 546-552
|
C. Carles, A. Johan, Targeting sirtuin 1 to improve metabolism: all you need is NAD (+)?, Pharmacol. Rev. 64 (2012) 166-187
|
K. Pallauf, G. Rimbacha, P.M. Ruppa, et al., Resveratrol and Lifespan in Model Organisms, Curr. Med. Chem. 23 (2016) 4639-4680
|
K.T. Howitz, K.J. Bitterman, H.Y. Cohen, et al., Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan, Nature 425 (2003) 191-196
|
J.A. Baur, K.J. Pearson, N.L. Price, et al., Resveratrol improves health and survival of mice on a high-calorie diet, Nature 444 (2006) 337-342
|
L. Marie, A. Carmen, G.H. Zachary, et al., Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α, Cell 127 (2006) 1109-1122
|
H.A. Tissenbaum, L. Guarente, Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans, Nature 410 (2001) 227-230
|
C.J. Kenyon, The genetics of ageing, Nature 464 (2010) 504-512
|
B. Agarwal, J.A. Baur, Resveratrol and life extension, Ann. NY. Acad. Sci. 1215 (2011) 138-143
|
D.R. Valenzano, E. Terzibasi, T. Genade, et al., Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate, Curr. Biol. 16 (2006) 296-300
|
B. Rascon, B.P. Hubbard, D.A. Sinclair, et al., The lifespan extension effects of resveratrol are conserved in the honey bee and may be driven by a mechanism related to caloric restriction, Aging 4 (2012) 499-508
|
C.B. Brachmann, J.M. Sherman, S.E. Devine, et al., The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability, Genes Dev. 9 (1995) 2888-2902
|
R.H. Cherry, History of Sericulture, B. Entomol. Soc. Am. 33 (1987) 83-85
|
C. Chen, J.B. Song, M. Chen, et al., Rhodiola rosea extends lifespan and improves stress tolerance in silkworm, Bombyx mori, Biogerontology 17 (2016) 373-381
|
J.B. Song, G.H. Jiang, J.F. Zhang, et al., Metformin prolongs lifespan through remodeling the energy distribution strategy in silkworm, Bombyx mori, Aging (Albany NY) 11 (2019) 240-248
|
J.B. Song, M. Chen, Z.Q. Li, et al., Astragalus polysaccharide extends lifespan via mitigating endoplasmic reticulum stress in the silkworm, Bombyx mori. Aging Dis. 10 (2019) 1187-1198
|
J.B. Song, J.F. Zhang, F.Y. Dai, Advantages and limitations of silkworm as an invertebrate model in aging and lifespan research. Open Access J. Gerontol. Geriatr. Med. 4 (2018) 555641
|
J.B. Song, D.M. Tang, Z.Q. Li, et al., Variation of lifespan in multiple strains, and effects of dietary restriction and BmFoxO on lifespan in silkworm, Bombyx mori, Oncotarget 8 (2016) 7294-7300
|
G.H. Wang, Q.Y. Xia, D.J. Cheng, et al., Reference genes identified in the silkworm Bombyx mori during metamorphism based on oligonucleotide microarray and confirmed by qRT-PCR, Insect Sci. 15 (2008) 405-413
|
M. Gonzalez-Freire, A. Diaz-Ruiz, D. Hauser, et al., The road ahead for health and lifespan interventions, Ageing Res. Rev. 59 (2020) 101037
|
S.D.L. Postnikoff, M.E. Malo, W. Berchman, et al., The yeast forkhead transcription factors fkh1 and fkh2 regulate lifespan and stress response together with the anaphase-promoting complex. PLoS Genet. 8 (2012) e1002583
|
K. Fukuhara, I.A. Nakanishi, T. Matsumura, et al., Effect of methyl substitution on the antioxidative property and genotoxicity of resveratrol, Chem. Res. Toxicol. 21 (2008) 282-287
|
D. Vilchez, I. Morantte, Z. Liu, et al., RPN-6 determines C. elegans longevity under proteotoxic stress conditions, Nature 489 (2012) 263-268
|
S.M. Solon-Biet, K.A. Walters, U.K. Simanainen, et al., Macronutrient balance, reproductive function, and lifespan in aging mice, Proc. Natl. Acad. Sci. U S A. 112 (2015) 3481-3486
|
G. Jasienska, Reproduction and lifespan: Trade-offs, overall energy budgets, intergenerational costs, and costs neglected by research, Am. J. Hum. Biol. 21 (2010) 524-532
|
D. Harman, Aging: a theory based on free radical and radiation chemistry, J. Gerontol. 11 (1956) 298-300
|
J.M.A. Tullet, DAF-16 target identification in C. elegans: past, present and future, Biogerontology 16 (2015) 221-234
|
C.T. Murphy, S.A. Mccarroll, C.I. Bargmann, et al., Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans, Nature 424 (2003) 277-283
|