Citation: | Dingyi Yu, Pengli Zhang, Junying Li, Ting Liu, Yaodan Zhang, Qingqing Wang, Jianbing Zhang, Xiaoyan Lu, Xiaohui Fan. Neuroprotective effects of Ginkgo biloba dropping pills in Parkinson’s disease[J]. Journal of Pharmaceutical Analysis, 2021, 11(2): 220-231. doi: 10.1016/j.jpha.2020.06.002 |
L.V. Kalia, A.E. Lang, Parkinson’s disease, Lancet 386 (2015) 896-912. http://doi.org/10.1016/S0140-6736(14)61393-3
|
E.R. Dorsey, R. Constantinescu, J.P. Thompson, et al., Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030, Neurology 68 (2007) 384-386. https://doi.org/10.1212/01.wnl.0000247740.47667.03
|
L.V. Kalia, A.E. Lang, Parkinson disease in 2015: Evolving basic, pathological and clinical concepts in PD, Nat. Rev. Neurol. 12 (2016) 65-66. http://doi.org/10.1038/nrneurol.2015.249
|
A.J. Noyce, J.P. Bestwick, L. Silveira-Moriyama, et al., Meta-analysis of early nonmotor features and risk factors for Parkinson disease, Ann. Neurol. 72 (2012) 893-901. http://doi.org/10.1002/ana.23687
|
C. Koros, A. Simitsi, and L. Stefanis, Genetics of Parkinson’s Disease: Genotype-Phenotype Correlations, Int. Rev. Neurobiol. 132 (2017) 197-231. http://doi.org/10.1016/bs.irn.2017.01.009
|
J.C. Corona, Natural Compounds for the Management of Parkinson’s Disease and Attention-Deficit/Hyperactivity Disorder, Biomed Res. Int. 2018 (2018) 4067597. https://doi.org/10.1155/2018/4067597
|
R. Ceravolo, C. Rossi, E. Del Prete, et al., A review of adverse events linked to dopamine agonists in the treatment of Parkinson’s disease, Expert Opin. Drug Saf. 15 (2016) 181-198. http://doi.org/10.1517/14740338.2016.1130128
|
P.A. Lewitt, Levodopa for the treatment of Parkinson’s disease, N. Engl. J. Med. 359 (2008) 2468-2476. http://doi.org/10.1056/NEJMct0800326
|
S.H. Fox, R. Katzenschlager, S.Y. Lim, et al., The Movement Disorder Society Evidence-Based Medicine Review Update: Treatments for the motor symptoms of Parkinson’s disease, Mov. Disord. 26 Suppl 3 (2011) S2-41. http://doi.org/10.1002/mds.23829
|
K. Seppi, D. Weintraub, M. Coelho, et al., The Movement Disorder Society Evidence-Based Medicine Review Update: Treatments for the non-motor symptoms of Parkinson’s disease, Mov. Disord. 26 Suppl 3 (2011) S42-80. http://doi.org/10.1002/mds.23884
|
Z. Yang, J. Zhu, H. Zhang, et al., Investigating chemical features of Panax notoginseng based on integrating HPLC fingerprinting and determination of multiconstituents by single reference standard, J. Ginseng Res. 42 (2018) 334-342. http://doi.org/10.1016/j.jgr.2017.04.005
|
T. Heinonen, W. Gaus, Cross matching observations on toxicological and clinical data for the assessment of tolerability and safety of Ginkgo biloba leaf extract, Toxicology 327 (2015) 95-115. http://doi.org/10.1016/j.tox.2014.10.013
|
F.V. DeFeudis , K. Drieu, Ginkgo biloba extract (EGb 761) and CNS functions: basic studies and clinical applications, Curr. Drug Targets 1 (2000) 25-58. http://doi.org/10.2174/1389450003349380
|
S. Kuang, L. Yang, Z. Rao, et al., Effects of Ginkgo Biloba Extract on A53T alpha-Synuclein Transgenic Mouse Models of Parkinson’s Disease, Can. J. Neurol. Sci. 45 (2018) 182-187. http://doi.org/10.1017/cjn.2017.268
|
F. Cao, S. Sun, E.T. Tong, Experimental study on inhibition of neuronal toxical effect of levodopa by ginkgo biloba extract on Parkinson disease in rats, J. Huazhong Univ. Sci. Tech.-Med. 23 (2003) 151-153. http://doi.org/10.1007/bf02859941
|
X. Lu, C. Li, T. Liu, et al., Chemical analysis, pharmacological activity and process optimization of the proportion of bilobalide and ginkgolides in Ginkgo biloba extract, J. Pharm. Biomed. Anal. 160 (2018) 46-54. http://doi.org/10.1016/j.jpba.2018.07.037
|
M. Sun, L. Chai, F. Lu, et al., Efficacy and Safety of Ginkgo Biloba Pills for Coronary Heart Disease with Impaired Glucose Regulation: Study Protocol for a Series of N-of-1 Randomized, Double-Blind, Placebo-Controlled Trials, Evid.-based Complement Altern. Med. 2018 (2018) 7571629. http://doi.org/10.1155/2018/7571629
|
G. Cao, W. Lu, H. Ye, et al., [Rapid identification of constituents from different Ginkgo biloba preparations by high resolution mass spectrometry and metabolomics technology], J. China Pharm. Univ. 49 (2018) 441-448. http://doi.org/10.11665/j.issn.1000-5048.20180409
|
X. Lu, W. Tong, S. Wang, et al., Comparison of the chemical consituents and immunomodulatory activity of ophiopogonis radix from two different producing areas, J. Pharm. Biomed. Anal. 134 (2017) 60-70. http://doi.org/10.1016/j.jpba.2016.11.025
|
A. A. D’souza, R. Shegokar, Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications, Expert Opin. Drug Deliv. 13 (2016) 1257-1275. https://doi.org/10.1080/17425247.2016.1182485
|
M. C. Martinez-Oharriz, C. Martin, M. M. Goni, et al., Influence of polyethylene glycol 4000 on the polymorphic forms of diflunisal, Eur. J. Pharm. Sci. 8 (1999) 127-132. https://doi.org/10.1016/s0928-0987(99)00006-8
|
W. Wang, Q. Kang, N. Liu, et al., Enhanced dissolution rate and oral bioavailability of Ginkgo biloba extract by preparing solid dispersion via hot-melt extrusion, Fitoterapia 102 (2015) 189-197. https://doi.org/10.1016/j.fitote.2014.10.004
|
X. Lu, W. Tong, S. Wang, et al., Comparison of the chemical consituents and immunomodulatory activity of ophiopogonis radix from two different producing areas, J. Pharm. Biomed. Anal. 134 (2017) 60-70. http://doi.org/10.1016/j.jpba.2016.11.025
|
A. Cronin, M. Grealy, Neuroprotective and Neuro-restorative Effects of Minocycline and Rasagiline in a Zebrafish 6-Hydroxydopamine Model of Parkinson’s Disease, Neuroscience 367 (2017) 34-46. http://doi.org/10.1016/j.neuroscience.2017.10.018
|
S.K. Yadav, S. Pandey, B. Singh, Role of estrogen and levodopa in 1-methyl-4-pheny-l-1, 2, 3, 6-tetrahydropyridine (mptp)-induced cognitive deficit in Parkinsonian ovariectomized mice model: A comparative study, J. Chem. Neuroanat. 85 (2017) 50-59. http://doi.org/10.1016/j.jchemneu.2017.07.002
|
M. Farres, S. Platikanov, S. Tsakovski, et al., Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation, J. Chemometrics 29 (2015) 528-536. https://doi.org/10.1002/cem.2736
|
X. Lu, Q. Zhao,Y. Tian, et al., A metabonomic characterization of (+)-usnic acid-induced liver injury by gas chromatography-mass spectrometry-based metabolic profiling of the plasma and liver in rat, Int. J. Toxicol. 30 (2011) 478-491. https://doi.org/10.1177/1091581811414436
|
K. Stroemgaard, K. Nakanishi, Chemistry and biology of terpene trilactones from Ginkgo biloba, Angew. Chem.-Int. Edit. 43 (2004) 1640-1658. https://doi.org/10.1002/anie.200300601
|
C. Ude, M. Schubert-Zsilavecz, M. Wurglics, Ginkgo biloba extracts: a review of the pharmacokinetics of the active ingredients, Clin. Pharmacokinet. 52 (2013) 727-749. http://doi.org/10.1007/s40262-013-0074-5
|
R. Abdel-Kader, S. Hauptmann, U. Keil, et al., Stabilization of mitochondrial function by Ginkgo biloba extract (EGb 761), Pharmacol. Res. 56 (2007) 493-502. https://doi.org/10.1016/j.phrs.2007.09.011
|
C. Ramassamy, F. Longpre, Y. Christen, Ginkgo biloba extract (EGb 761) in Alzheimer’s disease: is there any evidence?, Curr. Alzheimer Res. 4 (2007) 253-262. https://doi.org/10.1016/j.phrs.2007.09.011
|
H. Xicoy, B. Wieringa, G.J. Martens, The SH-SY5Y cell line in Parkinson’s disease research: a systematic review, Mol. Neurodegener. 12 (2017) 10. http://doi.org/10.1186/s13024-017-0149-0
|
J.W. Langston, P. Ballard, J.W. Tetrud, et al., Chronic Parkinsonism in Humans Due to a Product of Meperidine-Analog Synthesis, Science 219 (1983) 979-980. http://doi.org/10.1126/science.6823561
|
S. Waidyanatha, K. Ryan, A.L. Roe, et al., Follow that botanical: Challenges and recommendations for assessing absorption, distribution, metabolism and excretion of botanical dietary supplements, Food Chem. Toxicol. 121 (2018) 194-202. http://doi.org/10.1016/j.fct.2018.08.062
|
L. Rangel-Ordonez, M. Noldner, M. Schubert-Zsilavecz, et al., Plasma levels and distribution of flavonoids in rat brain after single and repeated doses of standardized Ginkgo biloba extract EGb 761®, Planta Med. 76 (2010) 1683-1690. https://doi.org/10.1055/s-0030-1249962
|
C. Ude, A. Paulke, M. Noldner, et al., Plasma and brain levels of terpene trilactones in rats after an oral single dose of standardized Ginkgo biloba extract EGb 761®, Planta Med. 77 (2011) 259-264. http://doi.org/10.1055/s-0030-1250286
|
K. Woelkart, E. Feizlmayr, P. Dittrich, et al., Pharmacokinetics of bilobalide, ginkgolide A and B after administration of three different Ginkgo biloba L. preparations in humans, Phytother. Res. 24 (2010) 445-450. http://doi.org/10.1002/ptr.3074
|
G. Cao, N. Wang, D. He, et al., Intestinal mucosal metabolites-guided detection of trace-level ginkgo biloba extract metabolome, J. Chromatogr. A 1608 (2019) 460417. https://doi.org/10.1016/j.chroma.2019.460417
|
J. Xu, K.L. Wang, Z.Y. Cao, et al., [Antagonistic effect of ginkgolide homologues on PAF-induced platelet aggregation and neuroprotective effect], China J. Chin. Mater. Med. 42 (2017) 4716-4721. http://doi.org/10.19540/j.cnki.cjcmm.2017.0206
|
J. Hua, N. Yin, B. Yang, et al., Ginkgolide B and bilobalide ameliorate neural cell apoptosis in alpha-synuclein aggregates, Biomed. Pharmacother. 96 (2017) 792-797. http://doi.org/10.1016/j.biopha.2017.10.050
|
R. M. Hussein, W. R. Mohamed, H. A. Omar, A neuroprotective role of kaempferol against chlorpyrifos-induced oxidative stress and memory deficits in rats via GSK3β-Nrf2 signaling pathway, Pestic. Biochem. Physiol. 152 (2018) 29-37. https://doi.org/10.1016/j.pestbp.2018.08.008
|
L. G. Costa, J. M. Garrick, P. J. Roque, et al., Mechanisms of Neuroprotection by Quercetin: Counteracting Oxidative Stress and More, Oxid. Med. Cell. Longev. (2016) 2986796, https://doi.org/10.1155/2016/2986796
|
N. Jamali-Raeufy, T. Baluchnejadmojarad, M. Roghani, et al., Isorhamnetin exerts neuroprotective effects in STZ-induced diabetic rats via attenuation of oxidative stress, inflammation and apoptosis, J. Chem. Neuroanat. 102 (2019) 101709, https://doi.org/10.1016/j.jchemneu.2019.101709
|
M. Weber, D. Dietrich, I. Grasel, et al., 6-Hydroxykynurenic acid and kynurenic acid differently antagonise AMPA and NMDA receptors in hippocampal neurones, J. Neurochem. 77 (2001) 1108-1115. http://doi.org/10.1046/j.1471-4159.2001.00340.x
|
S. Habtemariam, Rutin as a Natural Therapy for Alzheimer’s Disease: Insights into its Mechanisms of Action, Curr. Med. Chem. 23 (2016) 860-873. http://doi.org/10.2174/0929867323666160217124333
|
D.L. McKay, J.B. Blumberg, A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.), Phytother Res. 20 (2006) 519-530. http://doi.org/10.1002/ptr.1900
|
C.Y. Wang, Z.N. Sun, M.X. Wang, et al., SIRT1 mediates salidroside-elicited protective effects against MPP(+) -induced apoptosis and oxidative stress in SH-SY5Y cells: involvement in suppressing MAPK pathways, Cell Biol. Int. 42 (2018) 84-94. http://doi.org/10.1002/cbin.10864
|
X. Zhang, L. Bai, S. Zhang, X., et al., Trx-1 ameliorates learning and memory deficits in MPTP-induced Parkinson’s disease model in mice, Free Radic. Biol. Med. 124 (2018) 380-38. http://doi.org/10.1016/j.freeradbiomed.2018.06.029
|
P. Rojas, E. Ruiz-Sanchez, C. Rojas, et al., Ginkgo biloba extract (EGb 761) modulates the expression of dopamine-related genes in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice, Neuroscience 223 (2012) 246-257. http://doi.org/10.1016/j.neuroscience.2012.08.004
|
P. Rojas, N. Serrano-Garcia, J.J. Mares-Samano, et al., EGb761 protects against nigrostriatal dopaminergic neurotoxicity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice: role of oxidative stress, Eur. J. Neurosci. 28 (2008) 41-50. http://doi.org/10.1111/j.1460-9568.2008.06314.x
|
M. Golpich, E. Amini, F. Hemmati, et al., Glycogen synthase kinase-3 beta (GSK-3beta) signaling: Implications for Parkinson’s disease, Pharmacol. Res. 97 (2015) 16-26. http://doi.org/10.1016/j.phrs.2015.03.010
|
R.S. Jope, G.V. Johnson, The glamour and gloom of glycogen synthase kinase-3, Trends Biochem. Sci. 29 (2004) 95-102. http://doi.org/10.1016/j.tibs.2003.12.004
|
A. Petit-Paitel, F. Brau, J. Cazareth, et al., Involvment of cytosolic and mitochondrial GSK-3beta in mitochondrial dysfunction and neuronal cell death of MPTP/MPP-treated neurons, PLoS One 4 (2009) e5491. http://doi.org/10.1371/journal.pone.0005491
|
N.C. Xie, H. Li, D.L. Wei, et al., Glycogen synthase kinase-3 and p38 MAPK are required for opioid-induced microglia apoptosis, Neuropharmacology 59 (2010) 444-451. http://doi.org/10.1016/j.neuropharm.2010.06.006
|
W.J. Zeng, W. Zhang, F.F. Lu, et al., Resveratrol attenuates MPP+-induced mitochondrial dysfunction and cell apoptosis via AKT/GSK-3 beta pathway in SN4741 cells, Neurosci. Lett. 637 (2017) 50-56. http://doi.org/10.1016/j.neulet.2016.11.054
|
G. Lu, Y. Wu, Y.T. Mak, et al., Molecular evidence of the neuroprotective effect of Ginkgo biloba (EGb761) using bax/bcl-2 ratio after brain ischemia in senescence-accelerated mice, strain prone-8, Brain Res. 1090 (2006) 23-28. http://doi.org/10.1016/j.brainres.2006.02.138
|