Volume 11 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
Dingyi Yu, Pengli Zhang, Junying Li, Ting Liu, Yaodan Zhang, Qingqing Wang, Jianbing Zhang, Xiaoyan Lu, Xiaohui Fan. Neuroprotective effects of Ginkgo biloba dropping pills in Parkinson’s disease[J]. Journal of Pharmaceutical Analysis, 2021, 11(2): 220-231. doi: 10.1016/j.jpha.2020.06.002
Citation: Dingyi Yu, Pengli Zhang, Junying Li, Ting Liu, Yaodan Zhang, Qingqing Wang, Jianbing Zhang, Xiaoyan Lu, Xiaohui Fan. Neuroprotective effects of Ginkgo biloba dropping pills in Parkinson’s disease[J]. Journal of Pharmaceutical Analysis, 2021, 11(2): 220-231. doi: 10.1016/j.jpha.2020.06.002

Neuroprotective effects of Ginkgo biloba dropping pills in Parkinson’s disease

doi: 10.1016/j.jpha.2020.06.002
Funds:

The work was supported by the National S&

T Major Project (Grant No. 2018ZX09201011) and the Key Program from the Sci-Tech Plan of Zhejiang Province (Grant No. 2018C03075). We thank Hunter Biotechnology Co., Ltd. (Hangzhou, China) for technical support of the zebrafish experiments.

  • Received Date: Nov. 14, 2019
  • Accepted Date: Jun. 18, 2020
  • Rev Recd Date: Jun. 13, 2020
  • Publish Date: Jun. 20, 2020
  • Parkinson’s disease (PD) is the second most common neurodegenerative disease in the world; however, it lacks effective and safe treatments. Ginkgo biloba dropping pill (GBDP), a unique Chinese G. biloba leaf extract preparation, exhibits antioxidant and neuroprotective effects and has a potential as an alternative therapy for PD. Thus, the aims of this study were to evaluate the effects of GBDP in in vitro and in vivo PD models and to compare the chemical constituents and pharmacological activities of GBDP and the G. biloba extract EGb 761. Using liquid chromatography tandem-mass spectrometry, 46 GBDP constituents were identified. Principal component analysis identified differences in the chemical profiles of GBDP and EGb 761. A quantitative analysis of 12 constituents showed that GBDP had higher levels of several flavonoids and terpene trilactones than EGb 761, whereas EGb 761 had higher levels of organic acids. Moreover, we found that GBDP prevented 6-hydroxydopamine-induced dopaminergic neuron loss in zebrafish and improved cognitive impairment and neuronal damage in methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced PD mice. Although similar effects were observed after EGb 761 treatment, the neuroprotective effects were greater after GBDP treatment on several endpoints. In addition, in vitro results suggested that the Akt/GSK3β pathway may be involved in the neuroprotective effects of GBDP. These findings demonstrated that GBDP have potential neuroprotective effects in the treatment of PD.
  • loading
  • L.V. Kalia, A.E. Lang, Parkinson’s disease, Lancet 386 (2015) 896-912. http://doi.org/10.1016/S0140-6736(14)61393-3
    E.R. Dorsey, R. Constantinescu, J.P. Thompson, et al., Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030, Neurology 68 (2007) 384-386. https://doi.org/10.1212/01.wnl.0000247740.47667.03
    L.V. Kalia, A.E. Lang, Parkinson disease in 2015: Evolving basic, pathological and clinical concepts in PD, Nat. Rev. Neurol. 12 (2016) 65-66. http://doi.org/10.1038/nrneurol.2015.249
    A.J. Noyce, J.P. Bestwick, L. Silveira-Moriyama, et al., Meta-analysis of early nonmotor features and risk factors for Parkinson disease, Ann. Neurol. 72 (2012) 893-901. http://doi.org/10.1002/ana.23687
    C. Koros, A. Simitsi, and L. Stefanis, Genetics of Parkinson’s Disease: Genotype-Phenotype Correlations, Int. Rev. Neurobiol. 132 (2017) 197-231. http://doi.org/10.1016/bs.irn.2017.01.009
    J.C. Corona, Natural Compounds for the Management of Parkinson’s Disease and Attention-Deficit/Hyperactivity Disorder, Biomed Res. Int. 2018 (2018) 4067597. https://doi.org/10.1155/2018/4067597
    R. Ceravolo, C. Rossi, E. Del Prete, et al., A review of adverse events linked to dopamine agonists in the treatment of Parkinson’s disease, Expert Opin. Drug Saf. 15 (2016) 181-198. http://doi.org/10.1517/14740338.2016.1130128
    P.A. Lewitt, Levodopa for the treatment of Parkinson’s disease, N. Engl. J. Med. 359 (2008) 2468-2476. http://doi.org/10.1056/NEJMct0800326
    S.H. Fox, R. Katzenschlager, S.Y. Lim, et al., The Movement Disorder Society Evidence-Based Medicine Review Update: Treatments for the motor symptoms of Parkinson’s disease, Mov. Disord. 26 Suppl 3 (2011) S2-41. http://doi.org/10.1002/mds.23829
    K. Seppi, D. Weintraub, M. Coelho, et al., The Movement Disorder Society Evidence-Based Medicine Review Update: Treatments for the non-motor symptoms of Parkinson’s disease, Mov. Disord. 26 Suppl 3 (2011) S42-80. http://doi.org/10.1002/mds.23884
    Z. Yang, J. Zhu, H. Zhang, et al., Investigating chemical features of Panax notoginseng based on integrating HPLC fingerprinting and determination of multiconstituents by single reference standard, J. Ginseng Res. 42 (2018) 334-342. http://doi.org/10.1016/j.jgr.2017.04.005
    T. Heinonen, W. Gaus, Cross matching observations on toxicological and clinical data for the assessment of tolerability and safety of Ginkgo biloba leaf extract, Toxicology 327 (2015) 95-115. http://doi.org/10.1016/j.tox.2014.10.013
    F.V. DeFeudis , K. Drieu, Ginkgo biloba extract (EGb 761) and CNS functions: basic studies and clinical applications, Curr. Drug Targets 1 (2000) 25-58. http://doi.org/10.2174/1389450003349380
    S. Kuang, L. Yang, Z. Rao, et al., Effects of Ginkgo Biloba Extract on A53T alpha-Synuclein Transgenic Mouse Models of Parkinson’s Disease, Can. J. Neurol. Sci. 45 (2018) 182-187. http://doi.org/10.1017/cjn.2017.268
    F. Cao, S. Sun, E.T. Tong, Experimental study on inhibition of neuronal toxical effect of levodopa by ginkgo biloba extract on Parkinson disease in rats, J. Huazhong Univ. Sci. Tech.-Med. 23 (2003) 151-153. http://doi.org/10.1007/bf02859941
    X. Lu, C. Li, T. Liu, et al., Chemical analysis, pharmacological activity and process optimization of the proportion of bilobalide and ginkgolides in Ginkgo biloba extract, J. Pharm. Biomed. Anal. 160 (2018) 46-54. http://doi.org/10.1016/j.jpba.2018.07.037
    M. Sun, L. Chai, F. Lu, et al., Efficacy and Safety of Ginkgo Biloba Pills for Coronary Heart Disease with Impaired Glucose Regulation: Study Protocol for a Series of N-of-1 Randomized, Double-Blind, Placebo-Controlled Trials, Evid.-based Complement Altern. Med. 2018 (2018) 7571629. http://doi.org/10.1155/2018/7571629
    G. Cao, W. Lu, H. Ye, et al., [Rapid identification of constituents from different Ginkgo biloba preparations by high resolution mass spectrometry and metabolomics technology], J. China Pharm. Univ. 49 (2018) 441-448. http://doi.org/10.11665/j.issn.1000-5048.20180409
    X. Lu, W. Tong, S. Wang, et al., Comparison of the chemical consituents and immunomodulatory activity of ophiopogonis radix from two different producing areas, J. Pharm. Biomed. Anal. 134 (2017) 60-70. http://doi.org/10.1016/j.jpba.2016.11.025
    A. A. D’souza, R. Shegokar, Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications, Expert Opin. Drug Deliv. 13 (2016) 1257-1275. https://doi.org/10.1080/17425247.2016.1182485
    M. C. Martinez-Oharriz, C. Martin, M. M. Goni, et al., Influence of polyethylene glycol 4000 on the polymorphic forms of diflunisal, Eur. J. Pharm. Sci. 8 (1999) 127-132. https://doi.org/10.1016/s0928-0987(99)00006-8
    W. Wang, Q. Kang, N. Liu, et al., Enhanced dissolution rate and oral bioavailability of Ginkgo biloba extract by preparing solid dispersion via hot-melt extrusion, Fitoterapia 102 (2015) 189-197. https://doi.org/10.1016/j.fitote.2014.10.004
    X. Lu, W. Tong, S. Wang, et al., Comparison of the chemical consituents and immunomodulatory activity of ophiopogonis radix from two different producing areas, J. Pharm. Biomed. Anal. 134 (2017) 60-70. http://doi.org/10.1016/j.jpba.2016.11.025
    A. Cronin, M. Grealy, Neuroprotective and Neuro-restorative Effects of Minocycline and Rasagiline in a Zebrafish 6-Hydroxydopamine Model of Parkinson’s Disease, Neuroscience 367 (2017) 34-46. http://doi.org/10.1016/j.neuroscience.2017.10.018
    S.K. Yadav, S. Pandey, B. Singh, Role of estrogen and levodopa in 1-methyl-4-pheny-l-1, 2, 3, 6-tetrahydropyridine (mptp)-induced cognitive deficit in Parkinsonian ovariectomized mice model: A comparative study, J. Chem. Neuroanat. 85 (2017) 50-59. http://doi.org/10.1016/j.jchemneu.2017.07.002
    M. Farres, S. Platikanov, S. Tsakovski, et al., Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation, J. Chemometrics 29 (2015) 528-536. https://doi.org/10.1002/cem.2736
    X. Lu, Q. Zhao,Y. Tian, et al., A metabonomic characterization of (+)-usnic acid-induced liver injury by gas chromatography-mass spectrometry-based metabolic profiling of the plasma and liver in rat, Int. J. Toxicol. 30 (2011) 478-491. https://doi.org/10.1177/1091581811414436
    K. Stroemgaard, K. Nakanishi, Chemistry and biology of terpene trilactones from Ginkgo biloba, Angew. Chem.-Int. Edit. 43 (2004) 1640-1658. https://doi.org/10.1002/anie.200300601
    C. Ude, M. Schubert-Zsilavecz, M. Wurglics, Ginkgo biloba extracts: a review of the pharmacokinetics of the active ingredients, Clin. Pharmacokinet. 52 (2013) 727-749. http://doi.org/10.1007/s40262-013-0074-5
    R. Abdel-Kader, S. Hauptmann, U. Keil, et al., Stabilization of mitochondrial function by Ginkgo biloba extract (EGb 761), Pharmacol. Res. 56 (2007) 493-502. https://doi.org/10.1016/j.phrs.2007.09.011
    C. Ramassamy, F. Longpre, Y. Christen, Ginkgo biloba extract (EGb 761) in Alzheimer’s disease: is there any evidence?, Curr. Alzheimer Res. 4 (2007) 253-262. https://doi.org/10.1016/j.phrs.2007.09.011
    H. Xicoy, B. Wieringa, G.J. Martens, The SH-SY5Y cell line in Parkinson’s disease research: a systematic review, Mol. Neurodegener. 12 (2017) 10. http://doi.org/10.1186/s13024-017-0149-0
    J.W. Langston, P. Ballard, J.W. Tetrud, et al., Chronic Parkinsonism in Humans Due to a Product of Meperidine-Analog Synthesis, Science 219 (1983) 979-980. http://doi.org/10.1126/science.6823561
    S. Waidyanatha, K. Ryan, A.L. Roe, et al., Follow that botanical: Challenges and recommendations for assessing absorption, distribution, metabolism and excretion of botanical dietary supplements, Food Chem. Toxicol. 121 (2018) 194-202. http://doi.org/10.1016/j.fct.2018.08.062
    L. Rangel-Ordonez, M. Noldner, M. Schubert-Zsilavecz, et al., Plasma levels and distribution of flavonoids in rat brain after single and repeated doses of standardized Ginkgo biloba extract EGb 761®, Planta Med. 76 (2010) 1683-1690. https://doi.org/10.1055/s-0030-1249962
    C. Ude, A. Paulke, M. Noldner, et al., Plasma and brain levels of terpene trilactones in rats after an oral single dose of standardized Ginkgo biloba extract EGb 761®, Planta Med. 77 (2011) 259-264. http://doi.org/10.1055/s-0030-1250286
    K. Woelkart, E. Feizlmayr, P. Dittrich, et al., Pharmacokinetics of bilobalide, ginkgolide A and B after administration of three different Ginkgo biloba L. preparations in humans, Phytother. Res. 24 (2010) 445-450. http://doi.org/10.1002/ptr.3074
    G. Cao, N. Wang, D. He, et al., Intestinal mucosal metabolites-guided detection of trace-level ginkgo biloba extract metabolome, J. Chromatogr. A 1608 (2019) 460417. https://doi.org/10.1016/j.chroma.2019.460417
    J. Xu, K.L. Wang, Z.Y. Cao, et al., [Antagonistic effect of ginkgolide homologues on PAF-induced platelet aggregation and neuroprotective effect], China J. Chin. Mater. Med. 42 (2017) 4716-4721. http://doi.org/10.19540/j.cnki.cjcmm.2017.0206
    J. Hua, N. Yin, B. Yang, et al., Ginkgolide B and bilobalide ameliorate neural cell apoptosis in alpha-synuclein aggregates, Biomed. Pharmacother. 96 (2017) 792-797. http://doi.org/10.1016/j.biopha.2017.10.050
    R. M. Hussein, W. R. Mohamed, H. A. Omar, A neuroprotective role of kaempferol against chlorpyrifos-induced oxidative stress and memory deficits in rats via GSK3β-Nrf2 signaling pathway, Pestic. Biochem. Physiol. 152 (2018) 29-37. https://doi.org/10.1016/j.pestbp.2018.08.008
    L. G. Costa, J. M. Garrick, P. J. Roque, et al., Mechanisms of Neuroprotection by Quercetin: Counteracting Oxidative Stress and More, Oxid. Med. Cell. Longev. (2016) 2986796, https://doi.org/10.1155/2016/2986796
    N. Jamali-Raeufy, T. Baluchnejadmojarad, M. Roghani, et al., Isorhamnetin exerts neuroprotective effects in STZ-induced diabetic rats via attenuation of oxidative stress, inflammation and apoptosis, J. Chem. Neuroanat. 102 (2019) 101709, https://doi.org/10.1016/j.jchemneu.2019.101709
    M. Weber, D. Dietrich, I. Grasel, et al., 6-Hydroxykynurenic acid and kynurenic acid differently antagonise AMPA and NMDA receptors in hippocampal neurones, J. Neurochem. 77 (2001) 1108-1115. http://doi.org/10.1046/j.1471-4159.2001.00340.x
    S. Habtemariam, Rutin as a Natural Therapy for Alzheimer’s Disease: Insights into its Mechanisms of Action, Curr. Med. Chem. 23 (2016) 860-873. http://doi.org/10.2174/0929867323666160217124333
    D.L. McKay, J.B. Blumberg, A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.), Phytother Res. 20 (2006) 519-530. http://doi.org/10.1002/ptr.1900
    C.Y. Wang, Z.N. Sun, M.X. Wang, et al., SIRT1 mediates salidroside-elicited protective effects against MPP(+) -induced apoptosis and oxidative stress in SH-SY5Y cells: involvement in suppressing MAPK pathways, Cell Biol. Int. 42 (2018) 84-94. http://doi.org/10.1002/cbin.10864
    X. Zhang, L. Bai, S. Zhang, X., et al., Trx-1 ameliorates learning and memory deficits in MPTP-induced Parkinson’s disease model in mice, Free Radic. Biol. Med. 124 (2018) 380-38. http://doi.org/10.1016/j.freeradbiomed.2018.06.029
    P. Rojas, E. Ruiz-Sanchez, C. Rojas, et al., Ginkgo biloba extract (EGb 761) modulates the expression of dopamine-related genes in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice, Neuroscience 223 (2012) 246-257. http://doi.org/10.1016/j.neuroscience.2012.08.004
    P. Rojas, N. Serrano-Garcia, J.J. Mares-Samano, et al., EGb761 protects against nigrostriatal dopaminergic neurotoxicity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice: role of oxidative stress, Eur. J. Neurosci. 28 (2008) 41-50. http://doi.org/10.1111/j.1460-9568.2008.06314.x
    M. Golpich, E. Amini, F. Hemmati, et al., Glycogen synthase kinase-3 beta (GSK-3beta) signaling: Implications for Parkinson’s disease, Pharmacol. Res. 97 (2015) 16-26. http://doi.org/10.1016/j.phrs.2015.03.010
    R.S. Jope, G.V. Johnson, The glamour and gloom of glycogen synthase kinase-3, Trends Biochem. Sci. 29 (2004) 95-102. http://doi.org/10.1016/j.tibs.2003.12.004
    A. Petit-Paitel, F. Brau, J. Cazareth, et al., Involvment of cytosolic and mitochondrial GSK-3beta in mitochondrial dysfunction and neuronal cell death of MPTP/MPP-treated neurons, PLoS One 4 (2009) e5491. http://doi.org/10.1371/journal.pone.0005491
    N.C. Xie, H. Li, D.L. Wei, et al., Glycogen synthase kinase-3 and p38 MAPK are required for opioid-induced microglia apoptosis, Neuropharmacology 59 (2010) 444-451. http://doi.org/10.1016/j.neuropharm.2010.06.006
    W.J. Zeng, W. Zhang, F.F. Lu, et al., Resveratrol attenuates MPP+-induced mitochondrial dysfunction and cell apoptosis via AKT/GSK-3 beta pathway in SN4741 cells, Neurosci. Lett. 637 (2017) 50-56. http://doi.org/10.1016/j.neulet.2016.11.054
    G. Lu, Y. Wu, Y.T. Mak, et al., Molecular evidence of the neuroprotective effect of Ginkgo biloba (EGb761) using bax/bcl-2 ratio after brain ischemia in senescence-accelerated mice, strain prone-8, Brain Res. 1090 (2006) 23-28. http://doi.org/10.1016/j.brainres.2006.02.138
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (194) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return