Citation: | Zhongmei Chi, Siqi Zhao, Xiujun Cui, Yunxiang Feng, Li Yang. Portable and automated analyzer for rapid and high precision in vitro dissolution of drugs[J]. Journal of Pharmaceutical Analysis, 2021, 11(4): 490-498. doi: 10.1016/j.jpha.2020.06.001 |
B.B. Eedara, I.G. Tucker, S.C. Das, In vitro dissolution testing of respirable size anti-tubercular drug particles using a small volume dissolution apparatus, Int. J. Pharm. 559 (2019) 235-244. https://doi.org/10.1016/j.ijpharm.2019.01.035
|
A.P. Smith, T.W. Moore, B.J. Westenberger, et al., In vitro dissolution of oral modified-release tablets and capsules inethanolic media, Int. J. Pharm. 398 (2010) 93-96. https://doi.org/10.1016/j.ijpharm.2010.07.031
|
Datadase of FDA US Department of Health and Human Services, Guidance for industry: dissolution testing of immediate release solid dosage forms. Center of Drug Evaluation and Research (CDER), http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.229.293&rep=rep1&type=pdf. (accessed on 6 May, 2021)
|
M.I. Walash, S.A. El Abass Mohamed, Green analytical chromatographic assay method for quantitation of cyclobenzaprine in tablets, spiked human urine and in-vitro dissolution test, Ann. Pharm. Fr. 77 (2019) 418-425. https://doi.org/10.1016/j.pharma.2019.06.004
|
R. Sheshala, N.K. Anuar, N.H. Abu Samah, et al., In vitro drug dissolution/permeation testing of nanocarriers for skin application: a comprehensive review, AAPS PharmSciTech 20 (2019) 164. https://doi.org/10.1208/s12249-019-1362-7
|
K. Ilyes, A. Balogh, T. Casian, et al., 3D floating tablets: Appropriate 3D design from the perspective of different in vitro dissolution testing methodologies, Int. J. Pharm. 567 (2019) 11. https://doi.org/10.1016/j.ijpharm.2019.06.024
|
N. Zaborenko, Z.Q. Shi, C.C. Corredor, et al., First-principles and empirical approaches to predicting in vitro dissolution for pharmaceutical formulation and process development and for product release testing, AAPS J. 21 (2019) 20. https://doi.org/10.1208/s12248-019-0297-y
|
B. Dey, P. Katakam, F.H. Assaleh, et al., In vitro-in vivo studies of the quantitative effect of calcium, multivitamins and milk on single dose ciprofloxacin bioavailability, J. Pharm. Anal. 5 (2015) 389-395. https://doi.org/10.1016/j.jpha.2015.02.003
|
G.L. Amidon, H. Lennernas, V.P. Shah, et al., A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability, Pharm. Res. 12 (1995) 413-420. https://doi.org/10.1023/a:1016212804288
|
K. Ishii, Y. Saitou, R. Yamada, et al., Novel approach for determination of correlation between in vivo and in vitro dissolution using the optimization technique, Chem. Pharm. Bull. 44 (1996) 1550-1555. https://doi.org/10.1248/cpb.c18-01018
|
E. Nicolaides, E. Galia, C. Efthymiopoulos, et al., Forecasting the in vivo performance of four low solubility drugs from their in vitro dissolution data, Pharm. Res. 16 (1999) 1876-1882. https://doi.org/10.1023/A:1018959511323
|
M. Siewert, Perspectives of in vitro dissolution tests in establishing in vivo/in vitro correlations, Eur. J. Drug. Metab. Ph. 18 (1993) 7-18. https://doi.org/10.1007/BF03220004
|
V.R.S. Uppoor, Regulatory perspectives on in vitro (dissolution)/in vivo (bioavailability) correlations, J. Control. Release. 72 (2001) 127-132. https://doi.org/10.1016/S0168-3659(01)002.68-1
|
T. Katayama, S. Uchida, C. Kamiya, et al., In vivo drug dissolution in human oral cavity from orally disintegrating tablet and comparability with in vitro testing, Chem. Pharm. Bull. 66 (2018) 999-1005. https://doi.org/10.1248/cpb.c18-00492
|
M. Pleguezuelos-Villa, M. Merino-Sanjuan, M. Hernandez, et al., Relationship between rheological properties, in vitro release and in vivo equivalency of topical formulations of diclofenac, Int. J. Pharm. 572 (2019) 118755. https://doi.org/10.1016/j.ijpharm.2019.118755
|
B. De Spiegeleer, L. Van Vooren, J. Voorspoels, et al., Dissolution stability and IVIVC investigation of a buccal tablet, Anal. Chim. Acta. 446 (2001) 343-349. https://doi.org/10.1016/S0-003-2670(01)01074-1
|
J.B. Dressman, G.L. Amidon, C. Reppas, et al., Dissolution Testing as a Prognostic Tool for Oral Drug Absorption: Immediate Release Dosage Forms, Pharm. Res. 15 (1998) 11-22. https://doi.org/10.1023/A:1011984216775
|
E. Ansoborlo, M.H. Henge-Napoli, V. Chazel, et al., Review and critical analysis of available in vitro dissolution tests, Health. Phys. 77 (1999) 638-645. https://doi.org/10.1097/00004032-1999-12000-00007
|
F.W. Goodhart, R.H. McCoy, F.C. Ninger, New in vitro disintegration and dissolution test method for tablets and capsules, J. Pharm. Sci. 62 (1973) 304-310. https://doi.org/10.1002/jps.260.0620227
|
M. Kataoka, Y. Masaoka, Y. Yamazaki, et al., In vitro system to evaluate oral absorption of poorly water-soluble drugs: simultaneous analysis on dissolution and permeation of drugs, Pharm. Res. 20 (2003) 1674-1680. https://doi.org/10.1023/A:1026107906191
|
M. Ardelean, S.M. Stoicescu, C.L. Andrei, et al., Comparison of the in vitro dissolution profiles for a high solubility drug from immediate release formulations using apparatuses 3 and 4, Farmacia 66 (2018) 477-482. https://doi.org/10.31925/farmacia.2018.3.12
|
W.P. Forrest, K.G. Reuter, V. Shah, et al., USP Apparatus 4: a valuable in vitro tool to enable formulation development of long-acting parenteral (LAP) nanosuspension formulations of poorly water-soluble compounds, AAPS PharmSciTech 19 (2018) 413-424. https://doi.org/10.1208/s122-49-017-0842-x
|
Y. Upadhyay, N. Sharma, G.S. Sarma, et al., Application of RP-HPLC method in dissolution testing and statistical evaluation by NASSAM for simultaneous estimation of tertiary combined dosages forms, J. Pharm. Anal. 5 (2015) 307-315. https://doi.org/10.1016/j.jpha.2014.11.001
|
S.P. Clesio, T.M. Magda, D.M. Marcelo, et al., LC determination of entacapone in tablets: in vitro dissolution studies, J. Chromatogr. Sci. 48 (2010) 755-759. https://doi.org/10.1016/j.jpha.2.014.10.001
|
W. Jaikaew, A. Ruff, P. Khunkaewla, et al., Robotic microplate voltammetry for real-time hydrogel drug release testing, Anal. Chim. Acta. 1041 (2018) 33-39. https://doi.org/10.1016/j.aca.2018.08.033
|
M.C. Sarraguca, R. Matias, R. Figueiredo, et al., Near infrared spectroscopy to monitor drug release in-situ during dissolution tests, Int. J. Pharm. 513 (2016) 1-7. https://doi.org/10.1016/j.ijpharm.2016.09.010
|
Y. Sun, A. Chapman, S.W. Larsen, et al., UV-vis imaging of piroxicam supersaturation, precipitation and dissolution in a flow-through setup, Anal. Chem. 90 (2018) 6413-6418. https://doi.org/10.1021/acs.analchem.8b00587
|
K.H. Wiberg, U.K. Hultin, Multivariate chemometric approach to fiber-optic dissolution testing, Anal. Chem. 78 (2006) 5076-5085. https://doi.org/10.1021/ac0602928
|
Y. Wang, P.P. Xu, X.X. Li, et al., Monitoring the hydrolyzation of aspirin during the dissolution testing for aspirin delayed-release tablets with a fiber-optic dissolution system, J. Pharm. Anal. 2 (2012) 386-389. https://doi.org/10.1016/j.jpha.2012.06.002
|
D. Tomsu, M.C. Icardo, J.M. Calatayud, Automated simultaneous triple dissolution profiles of two drugs, sulphamethoxazole-trimethoprim and hydrochlorothiazide-captopril in solid oral dosage forms by a multicommutation flow-assembly and derivative spectrophotometry, J. Pharmaceut. Biomed. 36 (2004) 549-557. https://doi.org/10.1016/j.jpba.2004.07.009
|
A. Guillot, M. Limberger, J. Kramer, et al., In situ drug release monitoring with a fiber-optic system: Overcoming matrix interferences using derivative spectrophotometry, Dissolut. Technol. 20 (2013) 15-19. https://doi.org/10.14227/DT200213P15
|
I. Nir, X.J. Lu, In situ UV fiber optics for dissolution testing-what, why, and where we are after 30 years, Dissolut. Technol. 25 (2018) 70-77. https://doi.org/10.14227/DT250318P70
|
Z.M. Chi, I. Azhar, H. Khan, et al., Automatic dissolution testing with high-temporal resolution for both immediate-release and fixed combination drug tablets, Sci. Rep. 9 (2019) 17114. https://doi.org/10.1038/s41598-019-53750-w
|
European Directorate for the Quality of Medicines & HealthCare (EDQM), Recommendations on dissolution testing in: European Pharmacopeia 9.0, Strasbourg, 2017, pp. 761–763
|
Database of Guidance for industry: Immediate release solid oral dosage forms: Scale-up and post-approval changes: Chemistry, manufacturing and controls, in vivo dissolution testing, and in vivo bioequivalence documentation, Center for Drug Evaluation and Research (CDER), https://www.fda.gov/media/70936/download
|
USP 26-NF21 in: the United States Pharmacopoeia, The National Formulary, Rockville, 2003, pp. 5697-5789
|
T. Zhang, J. Fu, Q. Fang, Improved high-speed capillary electrophoresis system using a short capillary and picoliter-scale translational spontaneous injection, Electrophoresis 35 (2014) 2361-2369. https://doi.org/10.1002/elps.201400186
|
J.G. Wagner, E. Nelson, Per cent absorbed time plots derived from blood level and/or urinary excretion data, J. Pharm. Sci. 52 (1963) 610-611. https://doi.org/10.1002/jps.2600520629
|
Database of Guidance for industry: Extended release oral dosage forms: Development, evaluation, and application of in vitro/in vivo correlations, Center for Drug Evaluation and Research (CDER), https://www.fda.gov/media/70939/download
|
J. Al-Gousous, P. Langguth, A time-scaled convolution approach to construct IVIVC for enteric-coated acetylsalicylic acid tablets, Die. Pharmazie. 73 (2018) 67-69. https://doi.org/10.1691/ph.2018.7136
|
J.M. Cardot, J.C. Lukas, P. Muniz, Time scaling for in vitro-in vivo correlation: the inverse release Function (IRF) approach, AAPS J. 20 (2018) 95. https://doi.org/10.1208/s12248-018-0250-5
|
Z.Q. Li, S. Tian, H. Gu, et al., In vitro-in vivo predictive dissolution-permeation-absorption dynamics of highly permeable drug extended-release tablets via drug dissolution/absorption simulating system and pH alteration, AAPS PharmSciTech 19 (2018) 1882-1893. https://doi.org/10.1208/s12249-018-0996-1
|