Volume 11 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
Zhongmei Chi, Siqi Zhao, Xiujun Cui, Yunxiang Feng, Li Yang. Portable and automated analyzer for rapid and high precision in vitro dissolution of drugs[J]. Journal of Pharmaceutical Analysis, 2021, 11(4): 490-498. doi: 10.1016/j.jpha.2020.06.001
Citation: Zhongmei Chi, Siqi Zhao, Xiujun Cui, Yunxiang Feng, Li Yang. Portable and automated analyzer for rapid and high precision in vitro dissolution of drugs[J]. Journal of Pharmaceutical Analysis, 2021, 11(4): 490-498. doi: 10.1016/j.jpha.2020.06.001

Portable and automated analyzer for rapid and high precision in vitro dissolution of drugs

doi: 10.1016/j.jpha.2020.06.001
Funds:

This work was supported by the National Natural Science Foundation of China (Grant No. 21775017) and the Natural Science Foundation of Jilin Province, China (Grant No. 20180101174JC). L.Y. would like to thank the support from Jilin Provincial Department of Education and Jilin Provincial Key Laboratory of Micronano Functional Materials (Northeast Normal University, Changchun, China).

  • Received Date: Jan. 11, 2020
  • Accepted Date: Jun. 03, 2020
  • Rev Recd Date: Apr. 14, 2020
  • Available Online: Jan. 24, 2022
  • Publish Date: Aug. 15, 2021
  • We developed a novel portable and automated dissolution test analyzer for rapid and high precision in vitro dissolution testing of drugs. The analyzer consists of a flow-through-cell drug dissolution system, an automated sequential sampling system, a high-speed capillary electrophoresis (HSCE) system, and a data acquisition system. Combining the high-temporal resolution flow-gating sampling approach with HSCE, which has outstanding advantages of efficient separation and resolution, the analyzer can achieve rapid analysis and exhibits the ability in miniaturization for on-site assessment of different active pharmaceutical ingredients. To integrate the flow-through-cell dissolution system with HSCE, a specially designed flow-gating-injection (FGI) interface was employed. The performance of the analyzer was investigated by analyzing the dissolution of immediate-release drugs including single dose (amoxicillin dispersible tablets) and fixed dose combination (amoxicillin and clavulanate potassium) drug tablets with the high-temporal resolutions of 12 s and 20 s, respectively. The dissolution profiles of different active pharmaceutical ingredients could be simultaneously and automatically monitored with high repeatability and accuracy. The analyzer was successfully utilized for the pharmaceutical quality control and bio-relevant dissolution testing, as well as in vivo-in vitro correlation analysis. Our portable analyzer is miniaturized, convenient and of low-cost, and will provide a valuable tool for dissolution testing in pharmaceutical research and development.
  • loading
  • B.B. Eedara, I.G. Tucker, S.C. Das, In vitro dissolution testing of respirable size anti-tubercular drug particles using a small volume dissolution apparatus, Int. J. Pharm. 559 (2019) 235-244. https://doi.org/10.1016/j.ijpharm.2019.01.035
    A.P. Smith, T.W. Moore, B.J. Westenberger, et al., In vitro dissolution of oral modified-release tablets and capsules inethanolic media, Int. J. Pharm. 398 (2010) 93-96. https://doi.org/10.1016/j.ijpharm.2010.07.031
    Datadase of FDA US Department of Health and Human Services, Guidance for industry: dissolution testing of immediate release solid dosage forms. Center of Drug Evaluation and Research (CDER), http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.229.293&rep=rep1&type=pdf. (accessed on 6 May, 2021)
    M.I. Walash, S.A. El Abass Mohamed, Green analytical chromatographic assay method for quantitation of cyclobenzaprine in tablets, spiked human urine and in-vitro dissolution test, Ann. Pharm. Fr. 77 (2019) 418-425. https://doi.org/10.1016/j.pharma.2019.06.004
    R. Sheshala, N.K. Anuar, N.H. Abu Samah, et al., In vitro drug dissolution/permeation testing of nanocarriers for skin application: a comprehensive review, AAPS PharmSciTech 20 (2019) 164. https://doi.org/10.1208/s12249-019-1362-7
    K. Ilyes, A. Balogh, T. Casian, et al., 3D floating tablets: Appropriate 3D design from the perspective of different in vitro dissolution testing methodologies, Int. J. Pharm. 567 (2019) 11. https://doi.org/10.1016/j.ijpharm.2019.06.024
    N. Zaborenko, Z.Q. Shi, C.C. Corredor, et al., First-principles and empirical approaches to predicting in vitro dissolution for pharmaceutical formulation and process development and for product release testing, AAPS J. 21 (2019) 20. https://doi.org/10.1208/s12248-019-0297-y
    B. Dey, P. Katakam, F.H. Assaleh, et al., In vitro-in vivo studies of the quantitative effect of calcium, multivitamins and milk on single dose ciprofloxacin bioavailability, J. Pharm. Anal. 5 (2015) 389-395. https://doi.org/10.1016/j.jpha.2015.02.003
    G.L. Amidon, H. Lennernas, V.P. Shah, et al., A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability, Pharm. Res. 12 (1995) 413-420. https://doi.org/10.1023/a:1016212804288
    K. Ishii, Y. Saitou, R. Yamada, et al., Novel approach for determination of correlation between in vivo and in vitro dissolution using the optimization technique, Chem. Pharm. Bull. 44 (1996) 1550-1555. https://doi.org/10.1248/cpb.c18-01018
    E. Nicolaides, E. Galia, C. Efthymiopoulos, et al., Forecasting the in vivo performance of four low solubility drugs from their in vitro dissolution data, Pharm. Res. 16 (1999) 1876-1882. https://doi.org/10.1023/A:1018959511323
    M. Siewert, Perspectives of in vitro dissolution tests in establishing in vivo/in vitro correlations, Eur. J. Drug. Metab. Ph. 18 (1993) 7-18. https://doi.org/10.1007/BF03220004
    V.R.S. Uppoor, Regulatory perspectives on in vitro (dissolution)/in vivo (bioavailability) correlations, J. Control. Release. 72 (2001) 127-132. https://doi.org/10.1016/S0168-3659(01)002.68-1
    T. Katayama, S. Uchida, C. Kamiya, et al., In vivo drug dissolution in human oral cavity from orally disintegrating tablet and comparability with in vitro testing, Chem. Pharm. Bull. 66 (2018) 999-1005. https://doi.org/10.1248/cpb.c18-00492
    M. Pleguezuelos-Villa, M. Merino-Sanjuan, M. Hernandez, et al., Relationship between rheological properties, in vitro release and in vivo equivalency of topical formulations of diclofenac, Int. J. Pharm. 572 (2019) 118755. https://doi.org/10.1016/j.ijpharm.2019.118755
    B. De Spiegeleer, L. Van Vooren, J. Voorspoels, et al., Dissolution stability and IVIVC investigation of a buccal tablet, Anal. Chim. Acta. 446 (2001) 343-349. https://doi.org/10.1016/S0-003-2670(01)01074-1
    J.B. Dressman, G.L. Amidon, C. Reppas, et al., Dissolution Testing as a Prognostic Tool for Oral Drug Absorption: Immediate Release Dosage Forms, Pharm. Res. 15 (1998) 11-22. https://doi.org/10.1023/A:1011984216775
    E. Ansoborlo, M.H. Henge-Napoli, V. Chazel, et al., Review and critical analysis of available in vitro dissolution tests, Health. Phys. 77 (1999) 638-645. https://doi.org/10.1097/00004032-1999-12000-00007
    F.W. Goodhart, R.H. McCoy, F.C. Ninger, New in vitro disintegration and dissolution test method for tablets and capsules, J. Pharm. Sci. 62 (1973) 304-310. https://doi.org/10.1002/jps.260.0620227
    M. Kataoka, Y. Masaoka, Y. Yamazaki, et al., In vitro system to evaluate oral absorption of poorly water-soluble drugs: simultaneous analysis on dissolution and permeation of drugs, Pharm. Res. 20 (2003) 1674-1680. https://doi.org/10.1023/A:1026107906191
    M. Ardelean, S.M. Stoicescu, C.L. Andrei, et al., Comparison of the in vitro dissolution profiles for a high solubility drug from immediate release formulations using apparatuses 3 and 4, Farmacia 66 (2018) 477-482. https://doi.org/10.31925/farmacia.2018.3.12
    W.P. Forrest, K.G. Reuter, V. Shah, et al., USP Apparatus 4: a valuable in vitro tool to enable formulation development of long-acting parenteral (LAP) nanosuspension formulations of poorly water-soluble compounds, AAPS PharmSciTech 19 (2018) 413-424. https://doi.org/10.1208/s122-49-017-0842-x
    Y. Upadhyay, N. Sharma, G.S. Sarma, et al., Application of RP-HPLC method in dissolution testing and statistical evaluation by NASSAM for simultaneous estimation of tertiary combined dosages forms, J. Pharm. Anal. 5 (2015) 307-315. https://doi.org/10.1016/j.jpha.2014.11.001
    S.P. Clesio, T.M. Magda, D.M. Marcelo, et al., LC determination of entacapone in tablets: in vitro dissolution studies, J. Chromatogr. Sci. 48 (2010) 755-759. https://doi.org/10.1016/j.jpha.2.014.10.001
    W. Jaikaew, A. Ruff, P. Khunkaewla, et al., Robotic microplate voltammetry for real-time hydrogel drug release testing, Anal. Chim. Acta. 1041 (2018) 33-39. https://doi.org/10.1016/j.aca.2018.08.033
    M.C. Sarraguca, R. Matias, R. Figueiredo, et al., Near infrared spectroscopy to monitor drug release in-situ during dissolution tests, Int. J. Pharm. 513 (2016) 1-7. https://doi.org/10.1016/j.ijpharm.2016.09.010
    Y. Sun, A. Chapman, S.W. Larsen, et al., UV-vis imaging of piroxicam supersaturation, precipitation and dissolution in a flow-through setup, Anal. Chem. 90 (2018) 6413-6418. https://doi.org/10.1021/acs.analchem.8b00587
    K.H. Wiberg, U.K. Hultin, Multivariate chemometric approach to fiber-optic dissolution testing, Anal. Chem. 78 (2006) 5076-5085. https://doi.org/10.1021/ac0602928
    Y. Wang, P.P. Xu, X.X. Li, et al., Monitoring the hydrolyzation of aspirin during the dissolution testing for aspirin delayed-release tablets with a fiber-optic dissolution system, J. Pharm. Anal. 2 (2012) 386-389. https://doi.org/10.1016/j.jpha.2012.06.002
    D. Tomsu, M.C. Icardo, J.M. Calatayud, Automated simultaneous triple dissolution profiles of two drugs, sulphamethoxazole-trimethoprim and hydrochlorothiazide-captopril in solid oral dosage forms by a multicommutation flow-assembly and derivative spectrophotometry, J. Pharmaceut. Biomed. 36 (2004) 549-557. https://doi.org/10.1016/j.jpba.2004.07.009
    A. Guillot, M. Limberger, J. Kramer, et al., In situ drug release monitoring with a fiber-optic system: Overcoming matrix interferences using derivative spectrophotometry, Dissolut. Technol. 20 (2013) 15-19. https://doi.org/10.14227/DT200213P15
    I. Nir, X.J. Lu, In situ UV fiber optics for dissolution testing-what, why, and where we are after 30 years, Dissolut. Technol. 25 (2018) 70-77. https://doi.org/10.14227/DT250318P70
    Z.M. Chi, I. Azhar, H. Khan, et al., Automatic dissolution testing with high-temporal resolution for both immediate-release and fixed combination drug tablets, Sci. Rep. 9 (2019) 17114. https://doi.org/10.1038/s41598-019-53750-w
    European Directorate for the Quality of Medicines & HealthCare (EDQM), Recommendations on dissolution testing in: European Pharmacopeia 9.0, Strasbourg, 2017, pp. 761–763
    Database of Guidance for industry: Immediate release solid oral dosage forms: Scale-up and post-approval changes: Chemistry, manufacturing and controls, in vivo dissolution testing, and in vivo bioequivalence documentation, Center for Drug Evaluation and Research (CDER), https://www.fda.gov/media/70936/download
    USP 26-NF21 in: the United States Pharmacopoeia, The National Formulary, Rockville, 2003, pp. 5697-5789
    T. Zhang, J. Fu, Q. Fang, Improved high-speed capillary electrophoresis system using a short capillary and picoliter-scale translational spontaneous injection, Electrophoresis 35 (2014) 2361-2369. https://doi.org/10.1002/elps.201400186
    J.G. Wagner, E. Nelson, Per cent absorbed time plots derived from blood level and/or urinary excretion data, J. Pharm. Sci. 52 (1963) 610-611. https://doi.org/10.1002/jps.2600520629
    Database of Guidance for industry: Extended release oral dosage forms: Development, evaluation, and application of in vitro/in vivo correlations, Center for Drug Evaluation and Research (CDER), https://www.fda.gov/media/70939/download
    J. Al-Gousous, P. Langguth, A time-scaled convolution approach to construct IVIVC for enteric-coated acetylsalicylic acid tablets, Die. Pharmazie. 73 (2018) 67-69. https://doi.org/10.1691/ph.2018.7136
    J.M. Cardot, J.C. Lukas, P. Muniz, Time scaling for in vitro-in vivo correlation: the inverse release Function (IRF) approach, AAPS J. 20 (2018) 95. https://doi.org/10.1208/s12248-018-0250-5
    Z.Q. Li, S. Tian, H. Gu, et al., In vitro-in vivo predictive dissolution-permeation-absorption dynamics of highly permeable drug extended-release tablets via drug dissolution/absorption simulating system and pH alteration, AAPS PharmSciTech 19 (2018) 1882-1893. https://doi.org/10.1208/s12249-018-0996-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (148) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return