Citation: | Shun-Kai Yang, Khatijah Yusoff, Mokrish Ajat, Wai-Sum Yap, Swee-Hua Erin Lim, Kok-Song Lai. Antimicrobial activity and mode of action of terpene linalyl anthranilate against carbapenemase-producing Klebsiella pneumoniae[J]. Journal of Pharmaceutical Analysis, 2021, 11(2): 210-219. doi: 10.1016/j.jpha.2020.05.014 |
H. Yigit, A.M. Queenan, G.J. Anderson, et al., Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae, Antimicrob. Agents Chemother. 45 (2001) 1151-1161
|
World Health Organization, Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. http://remed.org/wp-content/uploads/2017/03/lobal-priority-list-of-antibiotic-resistant-bacteria-2017.pdf. (accessed on 29 March 2020).
|
A.K. van der Bij, J.D. Pitout, The role of international travel in the worldwide spread of multiresistant Enterobacteriaceae, J. Antimicrob. Chemother. 67 (2012) 2090-2100
|
C.L. Moo, S.K. Yang, K. Yusoff, et al., Mechanisms of antimicrobial resistance (AMR) and alternative approaches to overcome AMR, Curr. Drug Discov. Technol. (2019)
|
C.L. Ventola, The antibiotic resistance crisis: part 1: causes and threats, P&T. 40 (2015) 277-283
|
S.K. Yang, L.Y. Low, P.S.X. Yap, et al., Plant-derived antimicrobials: insights into mitigation of antimicrobial resistance, Rec. Nat. Prod. 12 (2018)
|
Z. Jiang, C. Kempinski, J. Chappell, Extraction and analysis of terpenes/terpenoids, Curr. Protoc. Plant Biol. 1 (2016) 345-358
|
N.A. Mahizan, S.K. Yang, C.L. Moo, et al., Terpene derivatives as a potential agent against antimicrobial resistant (AMR) pathogens, Molecules 24 (2019) 2631
|
D. Trombetta, F. Castelli, M.G. Sarpietro, et al., Mechanisms of antibacterial action of three monoterpenes, Antimicrob. Agents Chemother. 49 (2005) 2474-2478
|
J.C. Lopez-Romero, H. Gonzalez-Rios, A. Borges, et al., Antibacterial effects and mode of action of selected essential oils components against Escherichia coli and Staphylococcus aureus, Evid. Based Complement. Alternat. Med. 2015 (2015) 795435
|
H. Haraguchi, S. Oike, H. Muroi, et al., Mode of antibacterial action of totarol, a diterpene from Podocarpus nagi, Planta Med. 62 (1996) 122-125
|
A. Ultee, M.H.J. Bennik, R. Moezelaar, The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus, App. Environ. Microbiol. 68 (2002) 1561-1568
|
M.A. Zuniga, J. Dai, M.P. Wehunt, et al., DNA oxidative damage by terpene catechols as analogues of natural terpene quinone methide precursors in the presence of Cu(II) and/or NADH, Chem. Res. Toxicol. 19 (2006) 828-836
|
B. Rodenak-Kladniew, A. Castro, P. Starkel, et al., Linalool induces cell cycle arrest and apoptosis in HepG2 cells through oxidative stress generation and modulation of Ras/MAPK and Akt/mTOR pathways, Life Sci. 199 (2018) 48-59
|
M.Y. Memar, R. Ghotaslou, M. Samiei, et al., Antimicrobial use of reactive oxygen therapy: current insights, Infect. Drug Resist. 11 (2018) 567-576
|
G. Pizzino, N. Irrera, M. Cucinotta, et al., Oxidative stress: harms and benefits for human health, Oxid. Med. Cell Longev. 2017 (2017)
|
J. Van der Paal, E.C. Netys, C.C.W. Verlackt, et al., Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress, Chem. Sci. 7 (2016) 489-498
|
J. Wong-Ekkabut, Z. Xu, W. Triampo, et al., Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study, Biophys. J. 93 (2007) 4225-4236
|
B. Ezraty, A. Gennaris, F. Barras, et al., Oxidative stress, protein damage and repair in bacteria, Nat. Rev. Microbiol. 15 (2017) 385-396
|
J. Cadet, J.R. Wagner, DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation, Cold Spring Harb. Perspect. Biol. 5 (2013) a012559
|
F. Vatansever, W.C. de Melo, P. Avci, et al., Antimicrobial strategies centered around reactive oxygen species--bactericidal antibiotics, photodynamic therapy, and beyond, F.E.M.S. Microbiol. Rev. 37 (2013) 955-989
|
M.A. Kohanski, D.J. Dwyer, J. Wierzbowski, et al., Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death, Cell 135 (2008) 679-690
|
L.S. Hashmi, M.A. Hossain, A.M. Weli, et al., Gas chromatography-mass spectrometry analysis of different organic crude extracts from the local medicinal plant of Thymus vulgaris L, Asian Pac. J. Trop. Biomed. 3 (2013) 69-73
|
A. Navarrete, N. Avila-Rosas, M. Majin-Leon, et al., Mechanism of action of relaxant effect of Agastache mexicana ssp. mexicana essential oil in guinea-pig trachea smooth muscle, Pharm. Biol. 55 (2017) 96-100
|
P.S.X. Yap, T. Krishnan, B.C. Yiap, et al., Membrane disruption and anti-quorum sensing effects of synergistic interaction between Lavandula angustifolia (lavender oil) in combination with antibiotic against plasmid-conferred multi-drug-resistant Escherichia coli, J. Appl. Microbiol. 116 (2014) 1119-1128
|
M. Bialon, T. Krzysko-Lupicka, A. Pik, et al., Chemical composition of herbal macerates and corresponding commercial essential oils and their effect on bacteria Escherichia coli, Molecules 22 (2017) 1887
|
S.K. Yang, K. Yusoff, W. Thomas, et al., Lavender essential oil induces oxidative stress which modifies the bacterial membrane permeability of carbapenemase producing Klebsiella pneumoniae, Sci. Rep. 10 (2020) 819
|
S.K. Yang, K. Yusoff, C.W. Mai, et al., Additivity vs synergism: investigation of the additive interaction of cinnamon bark oil and meropenem in combinatory therapy, Molecules 22 (2017) 1733
|
P.S.X. Yap, S.H.E. Lim, C.P. Hu, et al., Combination of essential oils and antibiotics reduce antibiotic resistance in plasmid-conferred multidrug resistant bacteria, Phytomedicine 20 (2013) 710-713
|
J. Meletiadis, S. Pournaras, E. Roilides, et al., Defining fractional inhibitory concentration index cutoffs for additive interactions based on self-drug additive combinations, Monte Carlo simulation analysis, and in vitro-in vivo correlation data for antifungal drug combinations against Aspergillus fumigatus, Antimicrob. Agents Chemother. 54 (2010) 602-609
|
S.K. Yang, K. Yusoff, M. Ajat, et al., Disruption of KPC-producing Klebsiella pneumoniae membrane via induction of oxidative stress by cinnamon bark (Cinnamomum verum J. Presl) essential oil, PLoS One 14 (2019) e0214326
|
M. Viveiros, L. Rodrigues, M. Martins, et al., Evaluation of efflux activity of bacteria by a semi-automated fluorometric system, Methods Mol. Biol. 642 (2010) 159-172
|
C. Yao, X. Li, W. Bi, et al., Relationship between membrane damage, leakage of intracellular compounds, and inactivation of Escherichia coli treated by pressurized CO2, J. Basic Microbiol. 54 (2014) 858-865
|
A. Kumar, V. Sharma, A. Dhawan, Methods for detection of oxidative stress and genotoxicity of engineered nanoparticles, Methods Mol. Biol. 1028 (2013) 231-246
|
K.M. Papp-Wallace, A. Endimiani, M.A. Taracila, et al., Carbapenems: past, present, and future, Antimicrob. Agents Chemother. 55 (2011) 4943-4960
|
J. Willi, P. Kupfer, D. Evequoz, et al., Oxidative stress damages rRNA inside the ribosome and differentially affects the catalytic center, Nucleic Acids Res. 46 (2018) 1945-1957
|
E. Cabiscol, J. Tamarit, J. Ros, Oxidative stress in bacteria and protein damage by reactive oxygen species, Int. Microbiol. 3 (2000) 3-8
|
C. Guo, P. Ding, C. Xie, et al., Potential application of the oxidative nucleic acid damage biomarkers in detection of diseases, Oncotarget 8 (2017) 75767-75777
|
Q. Kong, C.L. Lin, Oxidative damage to RNA: mechanisms, consequences, and diseases, Cell Mol. Life Sci. 67 (2010) 1817-1829
|
I. Bononi, V. Balatti, S. Gaeta, et al., Gram-negative bacterial lipopolysaccharide retention by a positively charged new-generation filter, Appl. Environ. Microbiol. 74 (2008) 6470-6472
|