Volume 11 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
Shun-Kai Yang, Khatijah Yusoff, Mokrish Ajat, Wai-Sum Yap, Swee-Hua Erin Lim, Kok-Song Lai. Antimicrobial activity and mode of action of terpene linalyl anthranilate against carbapenemase-producing Klebsiella pneumoniae[J]. Journal of Pharmaceutical Analysis, 2021, 11(2): 210-219. doi: 10.1016/j.jpha.2020.05.014
Citation: Shun-Kai Yang, Khatijah Yusoff, Mokrish Ajat, Wai-Sum Yap, Swee-Hua Erin Lim, Kok-Song Lai. Antimicrobial activity and mode of action of terpene linalyl anthranilate against carbapenemase-producing Klebsiella pneumoniae[J]. Journal of Pharmaceutical Analysis, 2021, 11(2): 210-219. doi: 10.1016/j.jpha.2020.05.014

Antimicrobial activity and mode of action of terpene linalyl anthranilate against carbapenemase-producing Klebsiella pneumoniae

doi: 10.1016/j.jpha.2020.05.014
Funds:

This study was supported by the Higher College of Technology (HCT) Interdisciplinary Research Grant (Grant No. 113118), the Malaysian Medical Association Grant, and the UCSI PSIF Grant (Grant No. Proj-2019-In-Fas-062). The authors would like to acknowledge all members of the Floral Biotechnology Laboratory (FBL), Universiti Putra Malaysia, and Malaysia Genome Institute (MGI) for providing the necessary assistance and facilities throughout this study.

  • Received Date: Nov. 18, 2019
  • Accepted Date: May 28, 2020
  • Rev Recd Date: May 26, 2020
  • Publish Date: Jun. 06, 2020
  • Mining of plant-derived antimicrobials is the major focus at current to counter antibiotic resistance. This study was conducted to characterize the antimicrobial activity and mode of action of linalyl anthranilate (LNA) against carbapenemase-producing Klebsiella pneumoniae (KPC-KP). LNA alone exhibited bactericidal activity at 2.5% (V/V), and in combination with meropenem (MPM) at 1.25% (V/V). Comparative proteomic analysis showed a significant reduction in the number of cytoplasmic and membrane proteins, indicating membrane damage in LNA-treated KPC-KP cells. Up-regulation of oxidative stress regulator proteins and down-regulation of oxidative stress-sensitive proteins indicated oxidative stress. Zeta potential measurement and outer membrane permeability assay revealed that LNA increases both bacterial surface charge and membrane permeability. Ethidium bromide influx/efflux assay showed increased uptake of ethidium bromide in LNA-treated cells, inferring membrane damage. Furthermore, intracellular leakage of nucleic acid and proteins was detected upon LNA treatment. Scanning and transmission electron microscopies again revealed the breakage of bacterial membrane and loss of intracellular materials. LNA was found to induce oxidative stress by generating reactive oxygen species (ROS) that initiate lipid peroxidation and damage the bacterial membrane. In conclusion, LNA generates ROS, initiates lipid peroxidation, and damages the bacterial membrane, resulting in intracellular leakage and eventually killing the KPC-KP cells.
  • loading
  • H. Yigit, A.M. Queenan, G.J. Anderson, et al., Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae, Antimicrob. Agents Chemother. 45 (2001) 1151-1161
    World Health Organization, Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. http://remed.org/wp-content/uploads/2017/03/lobal-priority-list-of-antibiotic-resistant-bacteria-2017.pdf. (accessed on 29 March 2020).
    A.K. van der Bij, J.D. Pitout, The role of international travel in the worldwide spread of multiresistant Enterobacteriaceae, J. Antimicrob. Chemother. 67 (2012) 2090-2100
    C.L. Moo, S.K. Yang, K. Yusoff, et al., Mechanisms of antimicrobial resistance (AMR) and alternative approaches to overcome AMR, Curr. Drug Discov. Technol. (2019)
    C.L. Ventola, The antibiotic resistance crisis: part 1: causes and threats, P&T. 40 (2015) 277-283
    S.K. Yang, L.Y. Low, P.S.X. Yap, et al., Plant-derived antimicrobials: insights into mitigation of antimicrobial resistance, Rec. Nat. Prod. 12 (2018)
    Z. Jiang, C. Kempinski, J. Chappell, Extraction and analysis of terpenes/terpenoids, Curr. Protoc. Plant Biol. 1 (2016) 345-358
    N.A. Mahizan, S.K. Yang, C.L. Moo, et al., Terpene derivatives as a potential agent against antimicrobial resistant (AMR) pathogens, Molecules 24 (2019) 2631
    D. Trombetta, F. Castelli, M.G. Sarpietro, et al., Mechanisms of antibacterial action of three monoterpenes, Antimicrob. Agents Chemother. 49 (2005) 2474-2478
    J.C. Lopez-Romero, H. Gonzalez-Rios, A. Borges, et al., Antibacterial effects and mode of action of selected essential oils components against Escherichia coli and Staphylococcus aureus, Evid. Based Complement. Alternat. Med. 2015 (2015) 795435
    H. Haraguchi, S. Oike, H. Muroi, et al., Mode of antibacterial action of totarol, a diterpene from Podocarpus nagi, Planta Med. 62 (1996) 122-125
    A. Ultee, M.H.J. Bennik, R. Moezelaar, The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus, App. Environ. Microbiol. 68 (2002) 1561-1568
    M.A. Zuniga, J. Dai, M.P. Wehunt, et al., DNA oxidative damage by terpene catechols as analogues of natural terpene quinone methide precursors in the presence of Cu(II) and/or NADH, Chem. Res. Toxicol. 19 (2006) 828-836
    B. Rodenak-Kladniew, A. Castro, P. Starkel, et al., Linalool induces cell cycle arrest and apoptosis in HepG2 cells through oxidative stress generation and modulation of Ras/MAPK and Akt/mTOR pathways, Life Sci. 199 (2018) 48-59
    M.Y. Memar, R. Ghotaslou, M. Samiei, et al., Antimicrobial use of reactive oxygen therapy: current insights, Infect. Drug Resist. 11 (2018) 567-576
    G. Pizzino, N. Irrera, M. Cucinotta, et al., Oxidative stress: harms and benefits for human health, Oxid. Med. Cell Longev. 2017 (2017)
    J. Van der Paal, E.C. Netys, C.C.W. Verlackt, et al., Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress, Chem. Sci. 7 (2016) 489-498
    J. Wong-Ekkabut, Z. Xu, W. Triampo, et al., Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study, Biophys. J. 93 (2007) 4225-4236
    B. Ezraty, A. Gennaris, F. Barras, et al., Oxidative stress, protein damage and repair in bacteria, Nat. Rev. Microbiol. 15 (2017) 385-396
    J. Cadet, J.R. Wagner, DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation, Cold Spring Harb. Perspect. Biol. 5 (2013) a012559
    F. Vatansever, W.C. de Melo, P. Avci, et al., Antimicrobial strategies centered around reactive oxygen species--bactericidal antibiotics, photodynamic therapy, and beyond, F.E.M.S. Microbiol. Rev. 37 (2013) 955-989
    M.A. Kohanski, D.J. Dwyer, J. Wierzbowski, et al., Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death, Cell 135 (2008) 679-690
    L.S. Hashmi, M.A. Hossain, A.M. Weli, et al., Gas chromatography-mass spectrometry analysis of different organic crude extracts from the local medicinal plant of Thymus vulgaris L, Asian Pac. J. Trop. Biomed. 3 (2013) 69-73
    A. Navarrete, N. Avila-Rosas, M. Majin-Leon, et al., Mechanism of action of relaxant effect of Agastache mexicana ssp. mexicana essential oil in guinea-pig trachea smooth muscle, Pharm. Biol. 55 (2017) 96-100
    P.S.X. Yap, T. Krishnan, B.C. Yiap, et al., Membrane disruption and anti-quorum sensing effects of synergistic interaction between Lavandula angustifolia (lavender oil) in combination with antibiotic against plasmid-conferred multi-drug-resistant Escherichia coli, J. Appl. Microbiol. 116 (2014) 1119-1128
    M. Bialon, T. Krzysko-Lupicka, A. Pik, et al., Chemical composition of herbal macerates and corresponding commercial essential oils and their effect on bacteria Escherichia coli, Molecules 22 (2017) 1887
    S.K. Yang, K. Yusoff, W. Thomas, et al., Lavender essential oil induces oxidative stress which modifies the bacterial membrane permeability of carbapenemase producing Klebsiella pneumoniae, Sci. Rep. 10 (2020) 819
    S.K. Yang, K. Yusoff, C.W. Mai, et al., Additivity vs synergism: investigation of the additive interaction of cinnamon bark oil and meropenem in combinatory therapy, Molecules 22 (2017) 1733
    P.S.X. Yap, S.H.E. Lim, C.P. Hu, et al., Combination of essential oils and antibiotics reduce antibiotic resistance in plasmid-conferred multidrug resistant bacteria, Phytomedicine 20 (2013) 710-713
    J. Meletiadis, S. Pournaras, E. Roilides, et al., Defining fractional inhibitory concentration index cutoffs for additive interactions based on self-drug additive combinations, Monte Carlo simulation analysis, and in vitro-in vivo correlation data for antifungal drug combinations against Aspergillus fumigatus, Antimicrob. Agents Chemother. 54 (2010) 602-609
    S.K. Yang, K. Yusoff, M. Ajat, et al., Disruption of KPC-producing Klebsiella pneumoniae membrane via induction of oxidative stress by cinnamon bark (Cinnamomum verum J. Presl) essential oil, PLoS One 14 (2019) e0214326
    M. Viveiros, L. Rodrigues, M. Martins, et al., Evaluation of efflux activity of bacteria by a semi-automated fluorometric system, Methods Mol. Biol. 642 (2010) 159-172
    C. Yao, X. Li, W. Bi, et al., Relationship between membrane damage, leakage of intracellular compounds, and inactivation of Escherichia coli treated by pressurized CO2, J. Basic Microbiol. 54 (2014) 858-865
    A. Kumar, V. Sharma, A. Dhawan, Methods for detection of oxidative stress and genotoxicity of engineered nanoparticles, Methods Mol. Biol. 1028 (2013) 231-246
    K.M. Papp-Wallace, A. Endimiani, M.A. Taracila, et al., Carbapenems: past, present, and future, Antimicrob. Agents Chemother. 55 (2011) 4943-4960
    J. Willi, P. Kupfer, D. Evequoz, et al., Oxidative stress damages rRNA inside the ribosome and differentially affects the catalytic center, Nucleic Acids Res. 46 (2018) 1945-1957
    E. Cabiscol, J. Tamarit, J. Ros, Oxidative stress in bacteria and protein damage by reactive oxygen species, Int. Microbiol. 3 (2000) 3-8
    C. Guo, P. Ding, C. Xie, et al., Potential application of the oxidative nucleic acid damage biomarkers in detection of diseases, Oncotarget 8 (2017) 75767-75777
    Q. Kong, C.L. Lin, Oxidative damage to RNA: mechanisms, consequences, and diseases, Cell Mol. Life Sci. 67 (2010) 1817-1829
    I. Bononi, V. Balatti, S. Gaeta, et al., Gram-negative bacterial lipopolysaccharide retention by a positively charged new-generation filter, Appl. Environ. Microbiol. 74 (2008) 6470-6472
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (29) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return