Citation: | Lingge Gao, Xingmin Shi, Xili Wu. Applications and challenges of low temperature plasma in pharmaceutical field[J]. Journal of Pharmaceutical Analysis, 2021, 11(1): 28-36. doi: 10.1016/j.jpha.2020.05.001 |
G. Isbary, T. Shimizu, Y.F. Li, et al., Cold atmospheric plasma devices for medical issues, Expert Rev. Med. Devic. 10 (2013) 367-377
|
T. von Woedtke, S. Reuter, K. Masur, et al., Plasmas for medicine. Phys. Rep.-Rev. Sec. Phys. Lett. 530 (2013) 291-320
|
G. Fridman, G. Friedman, A. Gutsol, et al., Applied plasma medicine. Plasma Process. Polym. 5 (2008) 503-533
|
M. Laroussi, Low-Temperature Plasmas for Medicine?. IEEE Trans. Plasma Sci. 37 (2009) 714-725
|
A.S. Hauser, M.M. Attwood, M. Rask-Andersen, et al., Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16 (2017) 829-842
|
H.X. Wang, Z.J. Lu, L.J. Wang, et al., New Generation Nanomedicines Constructed from Self-Assembling Small-Molecule Prodrugs Alleviate Cancer Drug Toxicity. Cancer Res. 77 (2017) 6963-6974
|
I. Zueva, J. Dias, S. Lushchekina, et al., New evidence for dual binding site inhibitors of acetylcholinesterase as improved drugs for treatment of Alzheimer’s disease. Neuropharmacology 155 (2019) 131-141
|
J. Norman, R.D. Madurawe, C.M.V. Moore, et al., A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv. Drug Deliv. Rev. 108 (2017) 39-50
|
L. Wang, M. Zheng, Z. Xie, Nanoscale metal-organic frameworks for drug delivery: a conventional platform with new promise. J. Mater. Chem. B 6 (2018) 707-717
|
S. Sau, H.O. Alsaab, S.K. Kashaw, et al., Advances in antibody-drug conjugates: A new era of targeted cancer therapy. Drug Discov. Today 22 (2017) 1547-1556
|
A. Shaw, G. Shama, F. Iza, Emerging applications of low temperature gas plasmas in the food industry. Biointerphases. 10 (2015) 12
|
H.J. Kim, H.I. Yong, S. Park, et al., Effect of atmospheric pressure dielectric barrier discharge plasma on the biological activity of naringin. Food Chem. 160 (2014) 241-245
|
S.H. Choi, G.H. Jeong, K.B. Lee, et al., A green chemical oligomerization of phloroglucinol induced by plasma as novel alpha-glucosidase inhibitors. Biosci. Biotechnol. Biochem. 82 (2018) 2059-2063
|
G.H. Jeong, E.K. Park, T.H. Kim, Anti-diabetic effects of trans-resveratrol byproducts induced by plasma treatment. Food Res. Int. 119 (2019) 119-125
|
T.H. Kim, J. Lee, H.J. Kim, et al., Plasma-Induced Degradation of Quercetin Associated with the Enhancement of Biological Activities. J. Agr. Food Chem. 65 (2017) 6929-6935
|
M. Amini, M. Ghoranneviss, S. Abdijadid, Effect of cold plasma on crocin esters and volatile compounds of saffron. Food Chem. 235 (2017) 290-293
|
B. Masschalck, C.W. Michiels, Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria. Crit. Rev. Microbiol. 29 (2003) 191-214
|
S. Lee-Huang, P.L. Huang, Y.T. Sun, et al., Lysozyme and RNases as anti-HIV components in beta-core preparations of human chorionic gonadotropin. P. Natl. Acad. Sci. USA. 96 (1999) 2678-2681
|
S. Choi, P. Attri, I. Lee, et al., Structural and functional analysis of lysozyme after treatment with dielectric barrier discharge plasma and atmospheric pressure plasma jet. Sci. Rep. 7 (2017)
|
P. Attri, P. Venkatesu, N. Kaushik, et al., TMAO and sorbitol attenuate the deleterious action of atmospheric pressure non-thermal jet plasma on alpha-chymotrypsin. RSC Adv. 2 (2012) 7146-7155
|
D. Lee, J.C. Lee, J.Y. Nam, et al., Degradation of sulfonamide antibiotics and their intermediates toxicity in an aeration-assisted non-thermal plasma while treating strong wastewater. Chemosphere 209 (2018) 901-907
|
S.P. Rong, Y.B. Sun, Z.H. Zhao, Degradation of sulfadiazine antibiotics by water falling film dielectric barrier discharge. Chinese Chem. Lett. 25 (2014) 187-192
|
M. Magureanu, D. Piroi, N.B. Mandache, et al., Degradation of antibiotics in water by non-thermal plasma treatment. Water Res. 45 (2011) 3407-3416
|
M. Magureanu, D. Piroi, N.B. Mandache, et al., Degradation of pharmaceutical compound pentoxifylline in water by non-thermal plasma treatment. Water Res. 44 (2010) 3445-3453
|
K.D. Weltmann, R. Brandenburg, T. von Woedtke, et al., Antimicrobial treatment of heat sensitive products by miniaturized atmospheric pressure plasma jets (APPJs). J. Phys. D. Appl. Phys. 41 (2008)
|
M. Laroussi, Low temperature plasma-based sterilization: Overview and state-of-the-art[J]. Plasma Process. Polym. 2 (2005) 391-400
|
M.M. Gottesman, T. Fojo, S.E. Bates, Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer 2 (2002) 48-58
|
D.Y. Yan, J.H. Sherman, M. Keidar, Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget 8 (2017) 15977-15995
|
M. Keidar, A. Shashurin, O. Volotskova, et al., Cold atmospheric plasma in cancer therapy. Phys. Plasmas 20 (2013) 8
|
D. Xu, X. Luo, Y. Xu, et al., The effects of cold atmospheric plasma on cell adhesion, differentiation, migration, apoptosis and drug sensitivity of multiple myeloma. Biochem. Bioph. Res. Co. 473 (2016) 1125-1132
|
R. Guerrero-Preston, T. Ogawa, M. Uemura, et al., Cold atmospheric plasma treatment selectively targets head and neck squamous cell carcinoma cells. Int. J. Mol. Med. 34 (2014) 941-946
|
M. Weiss, D. Guembel, E.M. Hanschmann, et al., Cold Atmospheric Plasma Treatment Induces Anti-Proliferative Effects in Prostate Cancer Cells by Redox and Apoptotic Signaling Pathways. Plos One 10 (2015)
|
J.W. Chang, S.U. Kang, Y.S. Shin, et al., Combination of NTP with cetuximab inhibited invasion/migration of cetuximab-resistant OSCC cells: Involvement of NF-kappa B signaling. Sci. Rep. 5 (2015)
|
S.K. Sagwal, G. Pasqual-Melo, Y. Bodnar, et al., Combination of chemotherapy and physical plasma elicits melanoma cell death via upregulation of SLC22A16. Cell Death Dis. 9 (2018)
|
Z. Chang, G. Li, J. Liu, et al., Inhibitory effect of non-thermal plasma synergistic Tegafur on pancreatic tumor cell line BxPc-3 proliferation. Plasma Process. Polym. 16 (2019)
|
L. Brulle, M. Vandamme, D. Ries, et al., Effects of a Non Thermal Plasma Treatment Alone or in Combination with Gemcitabine in a MIA PaCa2-luc Orthotopic Pancreatic Carcinoma Model. Plos One 7 (2012)
|
M.E. Davis, Z. Chen, D.M. Shin, Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7 (2008) 771-782
|
W.H. De Jong, P.J.A. Borm, Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomed. 3 (2008) 133-149
|
E. Blanco, H. Shen, M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33 (2015) 941-951
|
W. Zhu, S.J. Lee, N.J. Castro, et al., Synergistic Effect of Cold Atmospheric Plasma and Drug Loaded Core-shell Nanoparticles on Inhibiting Breast Cancer Cell Growth. Sci.Rep. 6 (2016)
|
S. Aryal, G. Bisht, New Paradigm for a Targeted Cancer Therapeutic Approach: A Short Review on Potential Synergy of Gold Nanoparticles and Cold Atmospheric Plasma. Biomedicines 5 (2017)
|
X. Cheng, W. Murphy, N. Recek, et al., Synergistic effect of gold nanoparticles and cold plasma on glioblastoma cancer therapy. J. Phys. D Appl. Phys. 47 (2014)
|
X. Cheng, K. Rajjoub, J. Sherman, et al., Cold Plasma Accelerates the Uptake of Gold Nanoparticles Into Glioblastoma Cells. Plasma Process. Polym. 12 (2015) 1364-1369
|
H. Yu, Y. Wang, S. Wang, et al., Paclitaxel-Loaded Core-Shell Magnetic Nanoparticles and Cold Atmospheric Plasma Inhibit Non-Small Cell Lung Cancer Growth. Acs Appl. Mater. Inter. 10 (2018) 43462-43471
|
X.H. Huang, P.K. Jain, I.H. El-Sayed, et al., Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostic and therapy. Nanomedicine 2 (2007) 681-693
|
D. Pissuwan, T. Niidome, M.B. Cortie, The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J. Control. Release 149 (2011) 65-71
|
D.Y. Joh, L. Sun, M. Stangl, et al., Selective Targeting of Brain Tumors with Gold Nanoparticle-Induced Radiosensitization. Plos One 8 (2013)
|
J.A.A. Ho, H.C. Chang, N.Y. Shih, et al., Diagnostic Detection of Human Lung Cancer-Associated Antigen Using a Gold Nanoparticle-Based Electrochemical Immunosensor. Anal. Chem. 82 (2010) 5944-5950
|
P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, Au nanoparticles target cancer. Nano Today 2 (2007) 18-29
|
L.C. Kennedy, L.R. Bickford, N.A. Lewinski, et al., A New Era for Cancer Treatment: Gold-Nanoparticle-Mediated Thermal Therapies. Small 2011, 7 (2), 169-183
|
S. Aryal, G. Bisht, New Paradigm for a Targeted Cancer Therapeutic Approach: A Short Review on Potential Synergy of Gold Nanoparticles and Cold Atmospheric Plasma. Biomedicines 5 (201) 8
|
S. Irani, Z. Shahmirani, S.M. Atyabi, et al., Induction of growth arrest in colorectal cancer cells by cold plasma and gold nanoparticles. Arch. Med. Sci. 11 (2015) 1286-1295
|
Z. He, K. Liu, E. Manaloto, et al., Cold Atmospheric Plasma Induces ATP-Dependent Endocytosis of Nanoparticles and Synergistic U373MG Cancer Cell Death. Sci. Rep. 8 (2018)
|
N.K. Kaushik, N. Kaushik, K.C. Yoo, et al., Low doses of PEG-coated gold nanoparticles sensitize solid tumors to cold plasma by blocking the PI3K/AKT-driven signaling axis to suppress cellular transformation by inhibiting growth and EMT. Biomaterials 87 (2016) 118-130
|
M.G. Kong, M. Keidar, K. Ostrikov, Plasmas meet nanoparticles-where synergies can advance the frontier of medicine. J. Phys. D Appl. Phys. 44 (2011)
|
S. Kapse-Mistry, T. Govender, R. Srivastava, et al., Nanodrug delivery in reversing multidrug resistance in cancer cells. Front. Pharmacol. 5 (2014)
|
E.M. Liston, L. Martinu, M.R. Wertheimer. Plasma surface mo dification of polymers for improved adhesion-a critical-review. J. Adhes. Sci. Technol. 7 (1993) 1091-1127
|
V.M. Donnelly, A. Kornblit, Plasma etching: Yesterday, today, and tomorrow. J. Vac. Sci. Technol. A 31 (2013)
|
Y.B. Chang, P.C. Tu, M.W. Wul, et al., A study on chitosan modification of polyester fabrics by atmospheric pressure plasma and its antibacterial effects. Fiber. Polym. 9 (2008) 307-311
|
B. Finke, F. Luethen, K. Schroeder, et al., The effect of positively charged plasma polymerization on initial osteoblastic focal adhesion on titanium surfaces. Biomaterials 28 (2007) 4521-4534
|
T. Egghe, P. Cools, J.F.R. Van Guyse, et al., Water-Stable Plasma-Polymerized N,N-Dimethylacrylamide Coatings to Control Cellular Adhesion. Acs Appl. Mater. Inter. 12 (2020) 2116-2128
|
N.A. Bullett, R.A. Talib, R.D. Short, et al., Chemical and thermo-responsive characterisation of surfaces formed by plasma polymerisation of N-isopropyl acrylamide. Surf. Interface Anal. 38 (2006) 1109-1116
|
D.G. Petlin, S.I. Tverdokhlebov, Y.G. Anissimov, Plasma treatment as an efficient tool for controlled drug release from polymeric materials: A review. J. Control. Release 266 (2017) 57-74
|
X. Huang, C.S. Brazel, On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J. Control. Release 73 (2001) 121-136
|
C. Canal, M. Modic, U. Cvelbar, et al., Regulating the antibiotic drug release from beta-tricalcium phosphate ceramics by atmospheric plasma surface engineering. Biomater. Sci. 4 (2016) 1454-1461
|
G. Chen, F. Ali, S. Dong, et al., Preparation, characterization and functional evaluation of chitosan-based films with zein coatings produced by cold plasma. Carbohyd. Polym. 202 (2018) 39-46
|
X. Saitaer, N. Sanbhal, Y. Qiao, et al., Polydopamine-Inspired Surface Modification of Polypropylene Hernia Mesh Devices via Cold Oxygen Plasma: Antibacterial and Drug Release Properties. Coatings 9 (2019)
|
C. Labay, J. Ma Canal, C. Canal, Relevance of Surface Modification of Polyamide 6.6 Fibers by Air Plasma Treatment on the Release of Caffeine. Plasma Proces. Polym. 9 (2012) 165-173
|
K. Hagiwara, T. Hasebe, A. Hotta. Effects of plasma treatments on the controlled drug release from poly (ethylene-co-vinyl acetate). Surf. Coat. Tech. 216 (2013) 318-323
|
A.A. Ivanova, D.S. Syromotina, S. Shkarina, et al., Effect of low-temperature plasma treatment of electrospun polycaprolactone fibrous scaffolds on calcium carbonate mineralisation. Rsc Advanc. 8 (2018) 39106-39114
|
T. Murakami, S. Kuroda, Z. Osawa, Dynamics of polymeric solid surfaces treated with oxygen plasma: Effect of aging media after plasma treatment. J. Colloid Interf. Sci. 202(1998)37-44
|
H.A. Aboubakr, P. Williams, U. Gangal, et al., Virucidal Effect of Cold Atmospheric Gaseous Plasma on Feline Calicivirus, a Surrogate for Human Norovirus. Appl. Environ. Microb. 81 (2015) 3612-3622
|
J.L. Zimmermann, K. Dumler, T. Shimizu, et al., Effects of cold atmospheric plasmas on adenoviruses in solution. J. Phys. D Appl. Phys. 44 (2011)
|
O. Alekseev, K. Donovan, V. Limonnik, et al., Nonthermal Dielectric Barrier Discharge (DBD) Plasma Suppresses Herpes Simplex Virus Type 1 (HSV-1) Replication in Corneal Epithelium. Transl. Vision Sci. Tech. 3 (2014)
|
O. Terrier, B. Essere, M. Yver, et al., Cold oxygen plasma technology efficiency against different airborne respiratory viruses. J. Clin. Virol. 45 (2009) 119-124
|
G. Wang, R. Zhu, L. Yang, et al., Non-thermal plasma for inactivated-vaccine preparation. Vaccine 34 (2016) 1126-1132
|
A. Albert, J.T. Shelley, C. Engelhard, Plasma-based ambient desorption/ionization mass spectrometry: state-of-the-art in qualitative and quantitative analysis. Anal. Bioanal. Chem. 406 (2014) 6111-6127
|
Y. Liu, Z. Lin, S. Zhang, et al., Rapid screening of active ingredients in drugs by mass spectrometry with low-temperature plasma probe. Anal. Bioanal. Chem. 395 (2009) 591-599
|
A.U. Jackson, J.F. Garcia-Reyes, J.D. Harper, et al., Analysis of drugs of abuse in biofluids by low temperature plasma (LTP) ionization mass spectrometry. Analyst 2010, 135 (5), 927-933
|
J.S. Wiley, J.T. Shelley, R.G. Cooks, Handheld Low-Temperature Plasma Probe for Portable "Point-and-Shoot" Ambient Ionization Mass Spectrometry. Anal. Chem. 85 (2013) 6545-6552
|
D.N. Ateacha, C. Kuhlmann, C. Engelhard, Rapid screening of antimalarial drugs using low-temperature plasma desorption/ionization Orbitrap mass spectrometry. Anal. Methods 11 (2019) 566-574
|
J. Chauvin, L. Gibot, E. Griseti, et al., Elucidation of in vitro cellular steps induced by antitumor treatment with plasma-activated medium. Sci. Rep. 9 (2019)
|
Y. Gorbanev, D. O’Connell, V. Chechik, Non-Thermal Plasma in Contact with Water: The Origin of Species. Chem.-Eur. J. 22 (2016) 3496-3505
|
S. Mohades, M. Laroussi, J. Sears, et al., Evaluation of the effects of a plasma activated medium on cancer cells. Phys. Plasmas 22 (2015)
|
N. Kurake, H. Tanaka, K. Ishikawa, et al., Cell survival of glioblastoma grown in medium containing hydrogen peroxide and/or nitrite, or in plasma-activated medium. Arch. Biochem. Biophys. 605 (2016) 102-108
|
S. Takeda, S. Yamada, N. Hattori, et al., Intraperitoneal Administration of Plasma-Activated Medium: Proposal of a Novel Treatment Option for Peritoneal Metastasis From Gastric Cancer. Ann. Surg. Oncol. 24 (2017) 1188-1194
|
N. Kurake, K. Ishikawa, H. Tanaka, et al., Non-thermal plasma-activated medium modified metabolomic profiles in the glycolysis of U251SP glioblastoma. Arch. Biochem. Biophys. 662 (2019) 83-92
|
Z. Machala, B. Tarabova, D. Sersenova, et al., Chemical and antibacterial effects of plasma activated water: correlation with gaseous and aqueous reactive oxygen and nitrogen species, plasma sources and air flow conditions. J. Phys. D-Appl. Phys. 52 (2019) 17
|
Q. Zhang, R.N. Ma, Y. Tian, et al., Sterilization Efficiency of a Novel Electrochemical Disinfectant against Staphylococcus aureus. Environ. Sci. Technol. 50 (2016) 3184-3192
|
J. Duan, X. Lu, G. He, The selective effect of plasma activated medium in an in vitro co-culture of liver cancer and normal cells. J. Appl. Phys. 121 (2017)
|
J.I. Ikeda, H. Tanaka, K. Ishikawa, et al., Plasma-activated medium (PAM) kills human cancer-initiating cells. Pathol. Int. 68 (2018) 23-30
|
T. Adachi, H. Tanaka, S. Nonomura, et al., Plasma-activated medium induces A549 cell injury via a spiral apoptotic cascade involving the mitochondrial-nuclear network. Free Radical Bio. Med. 79 (2015) 28-44
|
H. Mokhtari, L. Farahmand, K. Yaserian, et al., The antiproliferative effects of cold atmospheric plasma-activated media on different cancer cell lines, the implication of ozone as a possible underlying mechanism. J. Cell. Physiol. 234 (2019) 6778-6782
|
N. Hattori, S. Yamada, K. Torii, et al., Effectiveness of plasma treatment on pancreatic cancer cells. Int. J. Oncol. 47 (2015) 1655-1662
|
K. Nakamura, Y. Peng, F. Utsumi, et al., Novel Intraperitoneal Treatment With Non-Thermal Plasma-Activated Medium Inhibits Metastatic Potential of Ovarian Cancer Cells. Sci. Rep. 7 (2017)
|
G.G. Balan, I. Rosca, E.L. Ursu, et al., Plasma-activated water: a new and effective alternative for duodenoscope reprocessing. Infect. Drug Resistance 11 (2018) 727-733
|
Y. Li, J. Pan, G. Ye, et al., In vitro studies of the antimicrobial effect of non-thermal plasma-activated water as a novel mouthwash. Eur. J. Oral Sci. 125 (2017) 463-470
|
L. Guo, R. Xu, L. Gou, et al., Mechanism of Virus Inactivation by Cold Atmospheric-Pressure Plasma and Plasma-Activated Water. Appl. Environ. Microb. 84 (2018)
|
X. Su, Y. Tian, H. Zhou, et al., Inactivation Efficacy of Nonthermal Plasma-Activated Solutions against Newcastle Disease Virus. Appl. Environ. Microb. 84 (2018)
|
F. Judee, C. Fongia, B. Ducommun, et al., Short and long time effects of low temperature Plasma Activated Media on 3D multicellular tumor spheroids. Sci. Rep. 6 (2016)
|
K.D. Weltmann, T. von Woedtke, Plasma medicine-current state of research and medical application. Plasma Phys. Contr. F. 59 (2017)
|
T.P. Chen, J. Liang, T.L. Su, Plasma-activated water: antibacterial activity and artifacts? Environ. Sci. Pollut. R. 25 (2018) 26699-26706
|
I.E. Vlad, S.D. Anghel, Time stability of water activated by different on-liquid atmospheric pressure plasmas. J. Electrostat. 87 (2017) 284-292
|
J. Shen, Y. Tian, Y. Li, et al., Bactericidal Effects against S-aureus and Physicochemical Properties of Plasma Activated Water stored at different temperatures. Sci. Rep. 6 (2016)
|
M. Magureanu, N.B. Mandache, V.I. Parvulescu, Degradation of pharmaceutical compounds in water by non-thermal plasma treatment. Water Res. 81 (2015) 124-136
|
Q. Xiang, C. Kang, L. Niu, et al., Antibacterial activity and a membrane damage mechanism of plasma- activated water against Pseudomonas deceptionensis CM2. Lwt-Food Sci. Technol. 96 (2018) 395-401
|
S.N. Kutlu, F. Canatan, A. Gulec, Plasma Activated Water for Plasma Medicine, 2018 Medical Technologies National Congress (TIPTEKNO), Magusa, 2018, 1-4
|