Volume 11 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
Lingge Gao, Xingmin Shi, Xili Wu. Applications and challenges of low temperature plasma in pharmaceutical field[J]. Journal of Pharmaceutical Analysis, 2021, 11(1): 28-36. doi: 10.1016/j.jpha.2020.05.001
Citation: Lingge Gao, Xingmin Shi, Xili Wu. Applications and challenges of low temperature plasma in pharmaceutical field[J]. Journal of Pharmaceutical Analysis, 2021, 11(1): 28-36. doi: 10.1016/j.jpha.2020.05.001

Applications and challenges of low temperature plasma in pharmaceutical field

doi: 10.1016/j.jpha.2020.05.001
Funds:

This work was supported by the National Natural Science Foundation of China (Grant No. 51677146), Project of Independent Innovative Experiment for Postgraduates in Medicine in Xi’an Jiaotong University (Grant No. JSCX-2018-014) and the Special Scientific Research Project Funds of Shaanxi Province (Grant No. 18JK1102).

  • Received Date: Nov. 12, 2019
  • Accepted Date: May 06, 2020
  • Rev Recd Date: Apr. 13, 2020
  • Available Online: Jan. 24, 2022
  • Publish Date: Feb. 15, 2021
  • Low temperature plasma (LTP) technology has shown an outstanding application value in the pharmaceutical filed in recent ten years. This paper reviews the research advances in LTP, including its effects on enhancing or inhibiting drug activity, its combined use with drugs to treat cancers, its effects on the improvement of drug delivery system, its use in preparation of new inactivated virus vaccines, its use with mass spectrometry for rapid detection of drug quality, and the anti-tumor and sterilization effects of plasma-activated liquids. The paper also analyzes the challenges of LTP in the pharmaceutical filed, hoping to promote related research.
  • loading
  • G. Isbary, T. Shimizu, Y.F. Li, et al., Cold atmospheric plasma devices for medical issues, Expert Rev. Med. Devic. 10 (2013) 367-377
    T. von Woedtke, S. Reuter, K. Masur, et al., Plasmas for medicine. Phys. Rep.-Rev. Sec. Phys. Lett. 530 (2013) 291-320
    G. Fridman, G. Friedman, A. Gutsol, et al., Applied plasma medicine. Plasma Process. Polym. 5 (2008) 503-533
    M. Laroussi, Low-Temperature Plasmas for Medicine?. IEEE Trans. Plasma Sci. 37 (2009) 714-725
    A.S. Hauser, M.M. Attwood, M. Rask-Andersen, et al., Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16 (2017) 829-842
    H.X. Wang, Z.J. Lu, L.J. Wang, et al., New Generation Nanomedicines Constructed from Self-Assembling Small-Molecule Prodrugs Alleviate Cancer Drug Toxicity. Cancer Res. 77 (2017) 6963-6974
    I. Zueva, J. Dias, S. Lushchekina, et al., New evidence for dual binding site inhibitors of acetylcholinesterase as improved drugs for treatment of Alzheimer’s disease. Neuropharmacology 155 (2019) 131-141
    J. Norman, R.D. Madurawe, C.M.V. Moore, et al., A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv. Drug Deliv. Rev. 108 (2017) 39-50
    L. Wang, M. Zheng, Z. Xie, Nanoscale metal-organic frameworks for drug delivery: a conventional platform with new promise. J. Mater. Chem. B 6 (2018) 707-717
    S. Sau, H.O. Alsaab, S.K. Kashaw, et al., Advances in antibody-drug conjugates: A new era of targeted cancer therapy. Drug Discov. Today 22 (2017) 1547-1556
    A. Shaw, G. Shama, F. Iza, Emerging applications of low temperature gas plasmas in the food industry. Biointerphases. 10 (2015) 12
    H.J. Kim, H.I. Yong, S. Park, et al., Effect of atmospheric pressure dielectric barrier discharge plasma on the biological activity of naringin. Food Chem. 160 (2014) 241-245
    S.H. Choi, G.H. Jeong, K.B. Lee, et al., A green chemical oligomerization of phloroglucinol induced by plasma as novel alpha-glucosidase inhibitors. Biosci. Biotechnol. Biochem. 82 (2018) 2059-2063
    G.H. Jeong, E.K. Park, T.H. Kim, Anti-diabetic effects of trans-resveratrol byproducts induced by plasma treatment. Food Res. Int. 119 (2019) 119-125
    T.H. Kim, J. Lee, H.J. Kim, et al., Plasma-Induced Degradation of Quercetin Associated with the Enhancement of Biological Activities. J. Agr. Food Chem. 65 (2017) 6929-6935
    M. Amini, M. Ghoranneviss, S. Abdijadid, Effect of cold plasma on crocin esters and volatile compounds of saffron. Food Chem. 235 (2017) 290-293
    B. Masschalck, C.W. Michiels, Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria. Crit. Rev. Microbiol. 29 (2003) 191-214
    S. Lee-Huang, P.L. Huang, Y.T. Sun, et al., Lysozyme and RNases as anti-HIV components in beta-core preparations of human chorionic gonadotropin. P. Natl. Acad. Sci. USA. 96 (1999) 2678-2681
    S. Choi, P. Attri, I. Lee, et al., Structural and functional analysis of lysozyme after treatment with dielectric barrier discharge plasma and atmospheric pressure plasma jet. Sci. Rep. 7 (2017)
    P. Attri, P. Venkatesu, N. Kaushik, et al., TMAO and sorbitol attenuate the deleterious action of atmospheric pressure non-thermal jet plasma on alpha-chymotrypsin. RSC Adv. 2 (2012) 7146-7155
    D. Lee, J.C. Lee, J.Y. Nam, et al., Degradation of sulfonamide antibiotics and their intermediates toxicity in an aeration-assisted non-thermal plasma while treating strong wastewater. Chemosphere 209 (2018) 901-907
    S.P. Rong, Y.B. Sun, Z.H. Zhao, Degradation of sulfadiazine antibiotics by water falling film dielectric barrier discharge. Chinese Chem. Lett. 25 (2014) 187-192
    M. Magureanu, D. Piroi, N.B. Mandache, et al., Degradation of antibiotics in water by non-thermal plasma treatment. Water Res. 45 (2011) 3407-3416
    M. Magureanu, D. Piroi, N.B. Mandache, et al., Degradation of pharmaceutical compound pentoxifylline in water by non-thermal plasma treatment. Water Res. 44 (2010) 3445-3453
    K.D. Weltmann, R. Brandenburg, T. von Woedtke, et al., Antimicrobial treatment of heat sensitive products by miniaturized atmospheric pressure plasma jets (APPJs). J. Phys. D. Appl. Phys. 41 (2008)
    M. Laroussi, Low temperature plasma-based sterilization: Overview and state-of-the-art[J]. Plasma Process. Polym. 2 (2005) 391-400
    M.M. Gottesman, T. Fojo, S.E. Bates, Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer 2 (2002) 48-58
    D.Y. Yan, J.H. Sherman, M. Keidar, Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget 8 (2017) 15977-15995
    M. Keidar, A. Shashurin, O. Volotskova, et al., Cold atmospheric plasma in cancer therapy. Phys. Plasmas 20 (2013) 8
    D. Xu, X. Luo, Y. Xu, et al., The effects of cold atmospheric plasma on cell adhesion, differentiation, migration, apoptosis and drug sensitivity of multiple myeloma. Biochem. Bioph. Res. Co. 473 (2016) 1125-1132
    R. Guerrero-Preston, T. Ogawa, M. Uemura, et al., Cold atmospheric plasma treatment selectively targets head and neck squamous cell carcinoma cells. Int. J. Mol. Med. 34 (2014) 941-946
    M. Weiss, D. Guembel, E.M. Hanschmann, et al., Cold Atmospheric Plasma Treatment Induces Anti-Proliferative Effects in Prostate Cancer Cells by Redox and Apoptotic Signaling Pathways. Plos One 10 (2015)
    J.W. Chang, S.U. Kang, Y.S. Shin, et al., Combination of NTP with cetuximab inhibited invasion/migration of cetuximab-resistant OSCC cells: Involvement of NF-kappa B signaling. Sci. Rep. 5 (2015)
    S.K. Sagwal, G. Pasqual-Melo, Y. Bodnar, et al., Combination of chemotherapy and physical plasma elicits melanoma cell death via upregulation of SLC22A16. Cell Death Dis. 9 (2018)
    Z. Chang, G. Li, J. Liu, et al., Inhibitory effect of non-thermal plasma synergistic Tegafur on pancreatic tumor cell line BxPc-3 proliferation. Plasma Process. Polym. 16 (2019)
    L. Brulle, M. Vandamme, D. Ries, et al., Effects of a Non Thermal Plasma Treatment Alone or in Combination with Gemcitabine in a MIA PaCa2-luc Orthotopic Pancreatic Carcinoma Model. Plos One 7 (2012)
    M.E. Davis, Z. Chen, D.M. Shin, Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7 (2008) 771-782
    W.H. De Jong, P.J.A. Borm, Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomed. 3 (2008) 133-149
    E. Blanco, H. Shen, M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33 (2015) 941-951
    W. Zhu, S.J. Lee, N.J. Castro, et al., Synergistic Effect of Cold Atmospheric Plasma and Drug Loaded Core-shell Nanoparticles on Inhibiting Breast Cancer Cell Growth. Sci.Rep. 6 (2016)
    S. Aryal, G. Bisht, New Paradigm for a Targeted Cancer Therapeutic Approach: A Short Review on Potential Synergy of Gold Nanoparticles and Cold Atmospheric Plasma. Biomedicines 5 (2017)
    X. Cheng, W. Murphy, N. Recek, et al., Synergistic effect of gold nanoparticles and cold plasma on glioblastoma cancer therapy. J. Phys. D Appl. Phys. 47 (2014)
    X. Cheng, K. Rajjoub, J. Sherman, et al., Cold Plasma Accelerates the Uptake of Gold Nanoparticles Into Glioblastoma Cells. Plasma Process. Polym. 12 (2015) 1364-1369
    H. Yu, Y. Wang, S. Wang, et al., Paclitaxel-Loaded Core-Shell Magnetic Nanoparticles and Cold Atmospheric Plasma Inhibit Non-Small Cell Lung Cancer Growth. Acs Appl. Mater. Inter. 10 (2018) 43462-43471
    X.H. Huang, P.K. Jain, I.H. El-Sayed, et al., Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostic and therapy. Nanomedicine 2 (2007) 681-693
    D. Pissuwan, T. Niidome, M.B. Cortie, The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J. Control. Release 149 (2011) 65-71
    D.Y. Joh, L. Sun, M. Stangl, et al., Selective Targeting of Brain Tumors with Gold Nanoparticle-Induced Radiosensitization. Plos One 8 (2013)
    J.A.A. Ho, H.C. Chang, N.Y. Shih, et al., Diagnostic Detection of Human Lung Cancer-Associated Antigen Using a Gold Nanoparticle-Based Electrochemical Immunosensor. Anal. Chem. 82 (2010) 5944-5950
    P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, Au nanoparticles target cancer. Nano Today 2 (2007) 18-29
    L.C. Kennedy, L.R. Bickford, N.A. Lewinski, et al., A New Era for Cancer Treatment: Gold-Nanoparticle-Mediated Thermal Therapies. Small 2011, 7 (2), 169-183
    S. Aryal, G. Bisht, New Paradigm for a Targeted Cancer Therapeutic Approach: A Short Review on Potential Synergy of Gold Nanoparticles and Cold Atmospheric Plasma. Biomedicines 5 (201) 8
    S. Irani, Z. Shahmirani, S.M. Atyabi, et al., Induction of growth arrest in colorectal cancer cells by cold plasma and gold nanoparticles. Arch. Med. Sci. 11 (2015) 1286-1295
    Z. He, K. Liu, E. Manaloto, et al., Cold Atmospheric Plasma Induces ATP-Dependent Endocytosis of Nanoparticles and Synergistic U373MG Cancer Cell Death. Sci. Rep. 8 (2018)
    N.K. Kaushik, N. Kaushik, K.C. Yoo, et al., Low doses of PEG-coated gold nanoparticles sensitize solid tumors to cold plasma by blocking the PI3K/AKT-driven signaling axis to suppress cellular transformation by inhibiting growth and EMT. Biomaterials 87 (2016) 118-130
    M.G. Kong, M. Keidar, K. Ostrikov, Plasmas meet nanoparticles-where synergies can advance the frontier of medicine. J. Phys. D Appl. Phys. 44 (2011)
    S. Kapse-Mistry, T. Govender, R. Srivastava, et al., Nanodrug delivery in reversing multidrug resistance in cancer cells. Front. Pharmacol. 5 (2014)
    E.M. Liston, L. Martinu, M.R. Wertheimer. Plasma surface mo dification of polymers for improved adhesion-a critical-review. J. Adhes. Sci. Technol. 7 (1993) 1091-1127
    V.M. Donnelly, A. Kornblit, Plasma etching: Yesterday, today, and tomorrow. J. Vac. Sci. Technol. A 31 (2013)
    Y.B. Chang, P.C. Tu, M.W. Wul, et al., A study on chitosan modification of polyester fabrics by atmospheric pressure plasma and its antibacterial effects. Fiber. Polym. 9 (2008) 307-311
    B. Finke, F. Luethen, K. Schroeder, et al., The effect of positively charged plasma polymerization on initial osteoblastic focal adhesion on titanium surfaces. Biomaterials 28 (2007) 4521-4534
    T. Egghe, P. Cools, J.F.R. Van Guyse, et al., Water-Stable Plasma-Polymerized N,N-Dimethylacrylamide Coatings to Control Cellular Adhesion. Acs Appl. Mater. Inter. 12 (2020) 2116-2128
    N.A. Bullett, R.A. Talib, R.D. Short, et al., Chemical and thermo-responsive characterisation of surfaces formed by plasma polymerisation of N-isopropyl acrylamide. Surf. Interface Anal. 38 (2006) 1109-1116
    D.G. Petlin, S.I. Tverdokhlebov, Y.G. Anissimov, Plasma treatment as an efficient tool for controlled drug release from polymeric materials: A review. J. Control. Release 266 (2017) 57-74
    X. Huang, C.S. Brazel, On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J. Control. Release 73 (2001) 121-136
    C. Canal, M. Modic, U. Cvelbar, et al., Regulating the antibiotic drug release from beta-tricalcium phosphate ceramics by atmospheric plasma surface engineering. Biomater. Sci. 4 (2016) 1454-1461
    G. Chen, F. Ali, S. Dong, et al., Preparation, characterization and functional evaluation of chitosan-based films with zein coatings produced by cold plasma. Carbohyd. Polym. 202 (2018) 39-46
    X. Saitaer, N. Sanbhal, Y. Qiao, et al., Polydopamine-Inspired Surface Modification of Polypropylene Hernia Mesh Devices via Cold Oxygen Plasma: Antibacterial and Drug Release Properties. Coatings 9 (2019)
    C. Labay, J. Ma Canal, C. Canal, Relevance of Surface Modification of Polyamide 6.6 Fibers by Air Plasma Treatment on the Release of Caffeine. Plasma Proces. Polym. 9 (2012) 165-173
    K. Hagiwara, T. Hasebe, A. Hotta. Effects of plasma treatments on the controlled drug release from poly (ethylene-co-vinyl acetate). Surf. Coat. Tech. 216 (2013) 318-323
    A.A. Ivanova, D.S. Syromotina, S. Shkarina, et al., Effect of low-temperature plasma treatment of electrospun polycaprolactone fibrous scaffolds on calcium carbonate mineralisation. Rsc Advanc. 8 (2018) 39106-39114
    T. Murakami, S. Kuroda, Z. Osawa, Dynamics of polymeric solid surfaces treated with oxygen plasma: Effect of aging media after plasma treatment. J. Colloid Interf. Sci. 202(1998)37-44
    H.A. Aboubakr, P. Williams, U. Gangal, et al., Virucidal Effect of Cold Atmospheric Gaseous Plasma on Feline Calicivirus, a Surrogate for Human Norovirus. Appl. Environ. Microb. 81 (2015) 3612-3622
    J.L. Zimmermann, K. Dumler, T. Shimizu, et al., Effects of cold atmospheric plasmas on adenoviruses in solution. J. Phys. D Appl. Phys. 44 (2011)
    O. Alekseev, K. Donovan, V. Limonnik, et al., Nonthermal Dielectric Barrier Discharge (DBD) Plasma Suppresses Herpes Simplex Virus Type 1 (HSV-1) Replication in Corneal Epithelium. Transl. Vision Sci. Tech. 3 (2014)
    O. Terrier, B. Essere, M. Yver, et al., Cold oxygen plasma technology efficiency against different airborne respiratory viruses. J. Clin. Virol. 45 (2009) 119-124
    G. Wang, R. Zhu, L. Yang, et al., Non-thermal plasma for inactivated-vaccine preparation. Vaccine 34 (2016) 1126-1132
    A. Albert, J.T. Shelley, C. Engelhard, Plasma-based ambient desorption/ionization mass spectrometry: state-of-the-art in qualitative and quantitative analysis. Anal. Bioanal. Chem. 406 (2014) 6111-6127
    Y. Liu, Z. Lin, S. Zhang, et al., Rapid screening of active ingredients in drugs by mass spectrometry with low-temperature plasma probe. Anal. Bioanal. Chem. 395 (2009) 591-599
    A.U. Jackson, J.F. Garcia-Reyes, J.D. Harper, et al., Analysis of drugs of abuse in biofluids by low temperature plasma (LTP) ionization mass spectrometry. Analyst 2010, 135 (5), 927-933
    J.S. Wiley, J.T. Shelley, R.G. Cooks, Handheld Low-Temperature Plasma Probe for Portable "Point-and-Shoot" Ambient Ionization Mass Spectrometry. Anal. Chem. 85 (2013) 6545-6552
    D.N. Ateacha, C. Kuhlmann, C. Engelhard, Rapid screening of antimalarial drugs using low-temperature plasma desorption/ionization Orbitrap mass spectrometry. Anal. Methods 11 (2019) 566-574
    J. Chauvin, L. Gibot, E. Griseti, et al., Elucidation of in vitro cellular steps induced by antitumor treatment with plasma-activated medium. Sci. Rep. 9 (2019)
    Y. Gorbanev, D. O’Connell, V. Chechik, Non-Thermal Plasma in Contact with Water: The Origin of Species. Chem.-Eur. J. 22 (2016) 3496-3505
    S. Mohades, M. Laroussi, J. Sears, et al., Evaluation of the effects of a plasma activated medium on cancer cells. Phys. Plasmas 22 (2015)
    N. Kurake, H. Tanaka, K. Ishikawa, et al., Cell survival of glioblastoma grown in medium containing hydrogen peroxide and/or nitrite, or in plasma-activated medium. Arch. Biochem. Biophys. 605 (2016) 102-108
    S. Takeda, S. Yamada, N. Hattori, et al., Intraperitoneal Administration of Plasma-Activated Medium: Proposal of a Novel Treatment Option for Peritoneal Metastasis From Gastric Cancer. Ann. Surg. Oncol. 24 (2017) 1188-1194
    N. Kurake, K. Ishikawa, H. Tanaka, et al., Non-thermal plasma-activated medium modified metabolomic profiles in the glycolysis of U251SP glioblastoma. Arch. Biochem. Biophys. 662 (2019) 83-92
    Z. Machala, B. Tarabova, D. Sersenova, et al., Chemical and antibacterial effects of plasma activated water: correlation with gaseous and aqueous reactive oxygen and nitrogen species, plasma sources and air flow conditions. J. Phys. D-Appl. Phys. 52 (2019) 17
    Q. Zhang, R.N. Ma, Y. Tian, et al., Sterilization Efficiency of a Novel Electrochemical Disinfectant against Staphylococcus aureus. Environ. Sci. Technol. 50 (2016) 3184-3192
    J. Duan, X. Lu, G. He, The selective effect of plasma activated medium in an in vitro co-culture of liver cancer and normal cells. J. Appl. Phys. 121 (2017)
    J.I. Ikeda, H. Tanaka, K. Ishikawa, et al., Plasma-activated medium (PAM) kills human cancer-initiating cells. Pathol. Int. 68 (2018) 23-30
    T. Adachi, H. Tanaka, S. Nonomura, et al., Plasma-activated medium induces A549 cell injury via a spiral apoptotic cascade involving the mitochondrial-nuclear network. Free Radical Bio. Med. 79 (2015) 28-44
    H. Mokhtari, L. Farahmand, K. Yaserian, et al., The antiproliferative effects of cold atmospheric plasma-activated media on different cancer cell lines, the implication of ozone as a possible underlying mechanism. J. Cell. Physiol. 234 (2019) 6778-6782
    N. Hattori, S. Yamada, K. Torii, et al., Effectiveness of plasma treatment on pancreatic cancer cells. Int. J. Oncol. 47 (2015) 1655-1662
    K. Nakamura, Y. Peng, F. Utsumi, et al., Novel Intraperitoneal Treatment With Non-Thermal Plasma-Activated Medium Inhibits Metastatic Potential of Ovarian Cancer Cells. Sci. Rep. 7 (2017)
    G.G. Balan, I. Rosca, E.L. Ursu, et al., Plasma-activated water: a new and effective alternative for duodenoscope reprocessing. Infect. Drug Resistance 11 (2018) 727-733
    Y. Li, J. Pan, G. Ye, et al., In vitro studies of the antimicrobial effect of non-thermal plasma-activated water as a novel mouthwash. Eur. J. Oral Sci. 125 (2017) 463-470
    L. Guo, R. Xu, L. Gou, et al., Mechanism of Virus Inactivation by Cold Atmospheric-Pressure Plasma and Plasma-Activated Water. Appl. Environ. Microb. 84 (2018)
    X. Su, Y. Tian, H. Zhou, et al., Inactivation Efficacy of Nonthermal Plasma-Activated Solutions against Newcastle Disease Virus. Appl. Environ. Microb. 84 (2018)
    F. Judee, C. Fongia, B. Ducommun, et al., Short and long time effects of low temperature Plasma Activated Media on 3D multicellular tumor spheroids. Sci. Rep. 6 (2016)
    K.D. Weltmann, T. von Woedtke, Plasma medicine-current state of research and medical application. Plasma Phys. Contr. F. 59 (2017)
    T.P. Chen, J. Liang, T.L. Su, Plasma-activated water: antibacterial activity and artifacts? Environ. Sci. Pollut. R. 25 (2018) 26699-26706
    I.E. Vlad, S.D. Anghel, Time stability of water activated by different on-liquid atmospheric pressure plasmas. J. Electrostat. 87 (2017) 284-292
    J. Shen, Y. Tian, Y. Li, et al., Bactericidal Effects against S-aureus and Physicochemical Properties of Plasma Activated Water stored at different temperatures. Sci. Rep. 6 (2016)
    M. Magureanu, N.B. Mandache, V.I. Parvulescu, Degradation of pharmaceutical compounds in water by non-thermal plasma treatment. Water Res. 81 (2015) 124-136
    Q. Xiang, C. Kang, L. Niu, et al., Antibacterial activity and a membrane damage mechanism of plasma- activated water against Pseudomonas deceptionensis CM2. Lwt-Food Sci. Technol. 96 (2018) 395-401
    S.N. Kutlu, F. Canatan, A. Gulec, Plasma Activated Water for Plasma Medicine, 2018 Medical Technologies National Congress (TIPTEKNO), Magusa, 2018, 1-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (202) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return