Volume 11 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
Yuan Li, Mengqi Wan, Guosheng Yan, Ping Qiu, Xiaolei Wang. A dual-signal sensor for the analysis of parathion-methyl using silver nanoparticles modified with graphitic carbon nitride[J]. Journal of Pharmaceutical Analysis, 2021, 11(2): 183-190. doi: 10.1016/j.jpha.2020.04.007
Citation: Yuan Li, Mengqi Wan, Guosheng Yan, Ping Qiu, Xiaolei Wang. A dual-signal sensor for the analysis of parathion-methyl using silver nanoparticles modified with graphitic carbon nitride[J]. Journal of Pharmaceutical Analysis, 2021, 11(2): 183-190. doi: 10.1016/j.jpha.2020.04.007

A dual-signal sensor for the analysis of parathion-methyl using silver nanoparticles modified with graphitic carbon nitride

doi: 10.1016/j.jpha.2020.04.007
Funds:

This work was financially supported by the National Natural Science Foundation of China (Grant No. 21765015, 21808099 to P. Qiu, 31860263 to X. Wang) and the Science and Technology Innovation Platform of Jiangxi Province (Grant No. 20192BCD40001), China.

  • Received Date: Nov. 26, 2019
  • Accepted Date: Apr. 21, 2020
  • Rev Recd Date: Apr. 21, 2020
  • Publish Date: Apr. 26, 2020
  • A highly sensitive and selective method was developed for both UV–vis spectrophotometric and fluorimetric determination of organophosphorus pesticides (OPs). This method used silver nanoparticles (AgNPs) modified with graphitic carbon nitride (g-C3N4). The AgNPs reduced the fluorescence intensity of g-C3N4. Acetylthiocholine (ATCh) could be catalytically hydrolyzed by acetylcholinesterase (AChE) to form thiocholine, which induces aggregation of the AgNPs. This aggregation led to the recovery of the blue fluorescence of g-C3N4, with excitation/emission peaks at 310/460 nm. This fluorescence intensity could be reduced again in the presence of OPs because of the inhibitory effect of OPs on the activity of AChE. The degree of reduction was found to be proportional to the concentration of OPs, and the limit of fluorometric detection was 0.0324 μg/L (S/N = 3). In addition, the absorption of the g-C3N4/AgNPs at 390 nm decreased because of the aggregation of the AgNPs, but was recovered in presence of OPs because of the inhibition of enzyme activity by OPs. This method was successfully applied to the analysis of parathion-methyl in real samples.
  • loading
  • M. Eddleston, F. Worek, P. Eyer, et al., Poisoning with the S-Alkyl organophosphorus insecticides profenofos and prothiofos, QJM-Int. J. Med. 102 (2009) 785-792
    M. Tankiewicz, J. Fenik, M. Biziuk, Determination of organophosphorus and organonitrogen pesticides in water samples, TrAC, Trends Anal. Chem. 29 (2010) 1050-1063
    S. Qian, H. Lin, Colorimetric sensor array for detection and identification of organophosphorus and carbamate pesticides, Anal. Chem. 87 (2015) 5395-5400
    S. Liao, W. Han, H. Ding, et al., Modulated dye retention for the signal-on fluorometric determination of acetylcholinesterase inhibitor, Anal. Chem. 85 (2013) 4968-4973
    C.S. Pundir, N. Chauhan, Acetylcholinesterase inhibition-based biosensors for pesticide determination: a review, Anal. Biochem. 429 (2012) 19-31
    M. Kushwaha, S. Verma, S. Chatterjee, Profenofos, an acetylcholinesterase-inhibiting organophosphorus pesticide: A short review of its usage, toxicity, and biodegradation, J. Environ. Qual. 45 (2016) 1478-1489
    M. Liang, K. Fan, Y. Pan, et al., Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent, Anal. Chem. 85 (2013) 308-312
    J. P. Ma, R. H. Xiao, H. Zhao, et al., Benzhang Shi, Shuqing Li, Determination of organophosphorus pesticides in underground water by SPE-GC-MS, J. Chromatogr. Sci. 47 (2009) 110-115
    B. Bucur, F.D. Munteanu, J.L. Marty, et al., Advances in enzyme-based biosensors for pesticide detection, Biosensors 8 (2018) https://doi.org/10.3390/bios8020027
    M. LeDoux, Analytical methods applied to the determination of pesticide residues in foods of animal origin. A review of the past two decades, J. Chromatogr. A 1218 (2011) 1021-1036
    L. Zhang, Z. Wang, Y. Wen, et al., Simultaneous detection of parathion and imidacloprid using broad-specificity polyclonal antibody in enzyme-linked immunosorbent assay, Anal. Methods 7 (2015) 205-210
    S. Zhang, X. Li, M. Zong, et al., A sensitive chemiluminescence enzyme immunoassay based on molecularly imprinted polymers solid-phase extraction of parathion, Anal. Biochem. 530 (2017) 87-93
    M. Garces-Garcia, E.M. Brun, R. Puchades, et al., Immunochemical determination of four organophosphorus insecticide residues in olive oil using a rapid extraction process, Anal. Chim. Acta 556 (2006) 347-354
    L. Tan, M. Guo, J. Tan, et al., Development of high-luminescence perovskite quantum dots coated with molecularly imprinted polymers for pesticide detection by slowly hydrolysing the organosilicon monomers in situ, Sens. Actuators B 291 (2019) 226-234
    A.L. Jenkins, R. Yin, J.L. Jensen, Molecularly imprinted polymer sensors for pesticide and insecticide detection in water, Analyst 126 (2001) 798-802
    J. Chen, X. Wei, H. Tang, et al., Highly discriminative fluorometric sensor based on luminescent covalent organic nanospheres for tyrosinase activity monitoring and inhibitor screening, Sens. Actuators B 305 (2020) 127386
    Q. Long, H. Li, Y. Zhang, et al., Upconversion nanoparticle-based fluorescence resonance energy transfer assay for organophosphorus pesticides, Biosens. Bioelectron. 68 (2015) 168-174
    S. Wang, X. Wang, X. Chen, et al., A novel upconversion luminescence turn-on nanosensor for ratiometric detection of organophosphorus pesticides, RSC Adv. 6 (2016) 46317-46324
    Y. Yi, G. Zhu, C. Liu, et al., A label-free silicon quantum dots-based photoluminescence sensor for ultrasensitive detection of pesticides, Anal. Chem. 85 (2013) 11464-11470
    X. Gao, G. Tang, X. Su, Optical detection of organophosphorus compounds based on Mn-doped ZnSe-dot enzymatic catalytic sensor, Biosens. Bioelectron. 36 (2012) 75-80
    Y. Yan, J. Sun, K. Zhang, et al., Visualizing gaseous nitrogen dioxide by ratiometric fluorescence of carbon nanodots-quantum dots hybrid, Anal. Chem. 87 (2015) 2087-2093
    D. Liu, W. Chen, J. Wei, et al., A highly sensitive, dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides, Anal. Chem. 84 (2012) 4185-4191
    M. Arvand, A.A. Mirroshandel, An efficient fluorescence resonance energy transfer system from quantum dots to graphene oxide nano sheets: Application in a photoluminescence aptasensing probe for the sensitive detection of diazinon, Food Chem. 280 (2019) 115-122
    Y. Zhan, J. Yang, L. Guo, et al., Targets regulated formation of boron nitride quantum dots - Gold nanoparticles nanocomposites for ultrasensitive detection of acetylcholinesterase activity and its inhibitors, Sens. Actuators B 279 (2019) 61-68
    Y. Gong, M. Li, Y. Wang, Carbon nitride in energy conversion and storage: recent advances and future prospects, ChemSusChem 8 (2015) 931-946
    X.L. Zhang, C. Zheng, S.S. Guo, et al., Turn-on fluorescence sensor for intracellular imaging of glutathione using g-C3N4 nanosheet-MnO2 sandwich nanocomposite, Anal. Chem. 86 (2014) 3426-3434
    E.Z. Lee, S.U. Lee, N.S. Heo, et al., W.H. Hong, A fluorescent sensor for selective detection of cyanide using mesoporous graphitic carbon(IV) nitride, Chem. Commun. 48 (2012) 3942-3944
    G. Zhang, J. Zhang, M. Zhang, et al., Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts, J. Mater. Chem. 22 (2012) 8083-8091
    Y. Cui, J. Zhang, G. Zhang, et al., Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution, J. Mater. Chem. 21 (2011) 13032-13039
    J. Tian, Q. Liu, A.M. Asiri, et al., Ultrathin graphitic carbon nitride nanosheets: a novel peroxidase mimetic, Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose, Nanoscale 5 (2013) 11604-11609
    N. Zhang, J. Gao, C. Huang, et al., In situ hydrothermal growth of ZnO/g-C3N4 nanoflowers coated solid-phase microextraction fibers coupled with GC-MS for determination of pesticides residues, Anal. Chim. Acta 934 (2016) 122-131
    H. Wang, P. Liu, W. Jiang, et al., Ai, Photoelectrochemical immunosensing platform for M. SssI methyltransferase activity analysis and inhibitor screening based on g-C3N4 and CdS quantum dots, Sens. Actuators B 244 (2017) 458-465
    X. Zhang, X. Xie, H. Wang, et al., Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging, J. Am. Chem. Soc. 135 (2013) 18-21
    Q.J. Luo, Y.X. Li, M.Q. Zhang, et al., A highly sensitive, dual-signal assay based on rhodamine B covered silver nanoparticles for carbamate pesticides, Chin. Chem. Lett. 28 (2017) 345-349
    J.R. Bhamore, P. Ganguly, S.K. Kailasa, Molecular assembly of 3-mercaptopropinonic acid and guanidine acetic acid on silver nanoparticles for selective colorimetric detection of triazophos in water and food samples, Sens. Actuators B 233 (2016) 486-495
    Y. Wang, F. Yang, X. Yang, Colorimetric detection of mercury(II) ion using unmodified silver nanoparticles and mercury-specific oligonucleotides, ACS Appl. Mat. Interfaces 2 (2010) 339-342
    D.G. Thompson, R.W. Stokes, R.W. Martin, et al., Synthesis of unique nanostructures with novel optical properties using oligonucleotide mixed-metal nanoparticle conjugates, Small 4 (2008) 1054-1057
    H. Xie, F. Bei, J. Hou, et al., A highly sensitive dual-signaling assay via inner filter effect between g-C3N4 and gold nanoparticles for organophosphorus pesticides, Sens. Actuators, B 255 (2018) 2232-2239
    F. Xu, X. Jiang, J. Hu, et al., Nano g-C3N4 /TiO2 composite: A highly efficient photocatalyst for selenium (VI) photochemical vapor generation for its ultrasensitive AFS determination, Microchem. J. 135 (2017) 158-162
    M. Zheng, Z. Xie, D. Qu, et al., On-off-on fluorescent carbon dot nanosensor for recognition of chromium(VI) and ascorbic acid based on the inner filter effect, ACS Appl. Mat. Interfaces 5 (2013) 13242-13247
    X. Zhu, Y. Xiao, X. Jiang, et al., A ratiometric nanosensor based on conjugated polyelectrolyte-stabilized AgNPs for ultrasensitive fluorescent and colorimetric sensing of melamine, Talanta 151 (2016) 68-74
    H. Ouyang, X. Tu, Z. Fu, et al., Colorimetric and chemiluminescent dual-readout immunochromatographic assay for detection of pesticide residues utilizing g-C3N4/BiFeO3 nanocomposites, Biosens. Bioelectron. 106 (2018) 43-49
    S.M. ZakirHossain, R.E. Luckham, M.J. McFadden, et al., Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples, Anal. Chem. 81 (2009) 9055-9064
    M. Khairy, H.A. Ayoub, C.E. Banks, Non-enzymatic electrochemical platform for parathion pesticide sensing based on nanometer-sized nickel oxide modified screen-printed electrodes, Food Chem. 255 (2018) 104-111
    Y. Li, Z. Gan, Y. Li, et al., Immobilization of acetylcholinesterase on one-dimensional gold nanoparticles for detection of organophosphorous insecticides, Sci China Chem. 53 (2010) 820-825
    Q.J. Luo, Z.G. Li, J.H. Lai, et al., An on-off-on gold nanocluster-based fluorescent probe for sensitive detection of organophosphorus pesticides, RSC Adv. 7 (2017) 55199-55205
    N.Y.Sreedhar, M.S. Kumar, Voltammetric determination of parathion at sulphonated polyaniline based electrochemical sensor, Anal. Bioanal. Electrochem. 5 (2013) 635-646
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (211) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return