Volume 11 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
Sara Hosayni Nasab, Amin Amani, Hossein Ali Ebrahimi, Ali Asghar Hamidi. Design and preparation of a new multi-targeted drug delivery system using multifunctional nanoparticles for co-delivery of siRNA and paclitaxel[J]. Journal of Pharmaceutical Analysis, 2021, 11(2): 163-173. doi: 10.1016/j.jpha.2020.04.005
Citation: Sara Hosayni Nasab, Amin Amani, Hossein Ali Ebrahimi, Ali Asghar Hamidi. Design and preparation of a new multi-targeted drug delivery system using multifunctional nanoparticles for co-delivery of siRNA and paclitaxel[J]. Journal of Pharmaceutical Analysis, 2021, 11(2): 163-173. doi: 10.1016/j.jpha.2020.04.005

Design and preparation of a new multi-targeted drug delivery system using multifunctional nanoparticles for co-delivery of siRNA and paclitaxel

doi: 10.1016/j.jpha.2020.04.005
Funds:

This study has been supported by the Deputy Research and Technology, Ardabil University of Medical Sciences.

  • Received Date: Dec. 16, 2019
  • Accepted Date: Apr. 17, 2020
  • Rev Recd Date: Apr. 07, 2020
  • Publish Date: Apr. 23, 2020
  • Drug resistance is a great challenge in cancer therapy using chemotherapeutic agents. Administration of these drugs with siRNA is an efficacious strategy in this battle. Here, the present study tried to incorporate siRNA and paclitaxel (PTX) simultaneously into a novel nanocarrier. The selectivity of carrier to target cancer tissues was optimized through conjugation of folic acid (FA) and glucose (Glu) onto its surface. The structure of nanocarrier was formed from ternary magnetic copolymers based on FeCo-polyethyleneimine (FeCo-PEI) nanoparticles and polylactic acid-polyethylene glycol (PLA-PEG) gene delivery system. Biocompatibility of FeCo-PEI-PLA-PEG-FA(NPsA), FeCo-PEI-PLA-PEG-Glu (NPsB) and FeCo-PEI-PLA-PEG-FA/Glu (NPsAB) nanoparticles and also influence of PTX-loaded nanoparticles on in vitro cytotoxicity were examined using MTT assay. Besides, siRNA-FAM internalization was investigated by fluorescence microscopy. The results showed the blank nanoparticles were significantly less cytotoxic at various concentrations. Meanwhile, siRNA-FAM/PTX encapsulated nanoparticles exhibited significant anticancer activity against MCF-7 and BT-474 cell lines. NPsAB/siRNA/PTX nanoparticles showed greater effects on MCF-7 and BT-474 cells viability than NPsA/siRNA/PTX and NPsB/siRNA/PTX. Also, they induced significantly higher anticancer effects on cancer cells compared with NPsA/siRNA/PTX and NPsB/siRNA/PTX due to their multi-targeted properties using FA and Glu. We concluded that NPsAB nanoparticles have a great potential for co-delivery of both drugs and genes for use in gene therapy and chemotherapy.
  • loading
  • R.I. Al-Wabli, T.M.M.H. Sakr, et al., Platelet-12 lipoxygenase targeting via a newly synthesized curcumin derivative radiolabeled with technetium-99m, Chem. Cent. J. 10 (2016) 1-12
    S. Yang, W. Li, H. Sun, et al., Resveratrol elicits anti-colorectal cancer effect by activating miR-34c-KITLG in vitro and in vivo, BMC Cancer. 15 (2015) 969
    X. Deng, Q. Qiu, B. Yang, et al., synthesis and biological evaluation of novel peptides with anti-cancer and drug resistance-reversing activities, Eur. J. Med. Chem. 89 (2015) 540-548
    Z. Hami, M. Amini, M. Ghazi-Khansari, et al., Doxorubicin-conjugated PLA-PEG-Folate based polymeric micelle for tumor-targeted delivery: Synthesis and in vitro evaluation, DARU, J. Pharm. Sci. 22 (2014) 1-7
    G.L. Zwicke, G.A. Mansoori, C.J. Jeffery, Targeting of Cancer Nanotherapeutics, Nano Rev. 1 (2012) 1-11
    Y.-I. Kim, Folate and carcinogenesis: evidence, mechanisms, and implications, J. Nutr. Biochem. 10 (1999) 66-88
    J.B. Mason, Folate: effects on carcinogenesis and the potential for cancer chemoprevention, (1996)
    A. Garcia-Bennett, M. Nees, B. Fadeel, In search of the Holy Grail: folate-targeted nanoparticles for cancer therapy, Biochem. Pharmacol. 81 (2011) 976-984
    L.G. Baggetto, Deviant energetic metabolism of glycolytic cancer cells, Biochimie. 74 (1992) 959-974
    O. Warburg, K. Posener, E. Negelein, The metabolism of cancer cells, Biochem Z. 152 (1924) 319-344
    O. Warburg, F. Wind, E. Negelein, The metabolism of tumors in the body, J. Gen. Physiol. 8 (1927) 519
    J. Li, F.-K. Ma, Q.-F. Dang, et al., Glucose-conjugated chitosan nanoparticles for targeted drug delivery and their specific interaction with tumor cells, Front. Mater. Sci. 8 (2014) 363-372
    V. Mamaeva, R. Niemi, M. Beck, et al., Inhibiting notch activity in breast cancer stem cells by glucose functionalized nanoparticles carrying $γ$-secretase inhibitors, Mol. Ther. 24 (2016) 926-936
    M. Wang, M. Thanou, Targeting nanoparticles to cancer, Pharmacol. Res. 62 (2010) 90-99
    G.-F. Hao, G.-F. Yang, C.-G. Zhan, Structure-based methods for predicting target mutation-induced drug resistance and rational drug design to overcome the problem, Drug Discov. Today. 17 (2012) 1121-1126
    F. Kanzawa, K. Nishio, T. Ishida, et al., Anti-tumour activities of a new benzo [c] phenanthridine agent, 2, 3-(methylenedioxy)-5-methyl-7-hydroxy-8-methoxybenzo [c] phenanthridinium hydrogensulphate dihydrate (NK109), against several drug-resistant human tumour cell lines, Br. J. Cancer. 76 (1997) 571-581
    Q. He, J. Liu, X. Sun, et al., Preparation and characteristics of DNA-nanoparticles targeting to hepatocarcinoma cells, World J. Gastroenterol. 10 (2004) 660-663
    A. Camirand, Y. Lu, M. Pollak, Co-targeting HER2/ErbB2 and insulin-like growth factor-1 receptors causes synergistic inhibition of growth in HER2-overexpressing breast cancer cells., Med. Sci. Monit. 8 (2002) BR521--BR526
    M. Mancini, M.B. Gariboldi, E. Taiana, et al., Co-targeting the IGF system and HIF-1 inhibits migration and invasion by (triple-negative) breast cancer cells, Br. J. Cancer. 110 (2014) 2865
    M. Kumar, M. Yigit, G. Dai, et al., Image-guided breast tumor therapy using a small interfering RNA nanodrug, Cancer Res. 70 (2010) 7553-7561
    Y. Patil, J. Panyam, Polymeric nanoparticles for siRNA delivery and gene silencing, Int. J. Pharm. 367 (2009) 195-203
    S.F. Peng, H.K. Hsu, C.C. Lin, et al., Novel PEI/Poly-γ-gutamic acid nanoparticles for high efficient siRNA and plasmid DNA co-delivery, Molecules. 22 (2017) 1-16
    X.Z. Yang, S. Dou, T.M. Sun, et al., Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy, J. Control. Release. 156 (2011) 203-211
    S. Kapse-Mistry, T. Govender, R. Srivastava, et al., Nanodrug delivery in reversing multidrug resistance in cancer cells, Front. Pharmacol. 5 JUL (2014) 1-31
    Y. Yang, H. Zhao, Y. Jia, et al., A novel gene delivery composite system based on biodegradable folate-poly (ester amine) polymer and thermosensitive hydrogel for sustained gene release, Sci. Rep. 6 (2016) 1-12
    J. Hu, M. Zhu, K. Liu, et al., A biodegradable polyethylenimine-based vector modified by trifunctional peptide R18 for enhancing gene transfection efficiency in vivo, PLoS One. 11 (2016) 1-21
    S. Shi, X. Zhu, Q.F. Guo, et al., Self-assembled mPEG-PCL-g-PEI micelles for simultaneous codelivery of chemotherapeutic drugs and DNA: Synthesis and characterization in vitro, Int. J. Nanomedicine. 7 (2012) 1749-1759
    A. Amani, T. Kabiri, S. Shafiee, et al., Preparation and characterization of PLA-PEG-PLA/PEI/DNA nanoparticles for improvement of transfection efficiency and controlled release of DNA in gene delivery systems, Iran. J. Pharm. Res. IJPR. 18 (2019) 125
    L. Chen, F. Ji, Y. Bao, et al., Biocompatible cationic pullulan-g-desoxycholic acid-g-PEI micelles used to co-deliver drug and gene for cancer therapy, Mater. Sci. Eng. C. 70 (2017) 418-429
    S. Shi, K. Shi, L. Tan, et al., The use of cationic MPEG-PCL-g-PEI micelles for co-delivery of Msurvivin T34A gene and doxorubicin, Biomaterials. 35 (2014) 4536-4547
    J. Shen, Q. Yin, L. Chen, et al., Co-delivery of paclitaxel and survivin shRNA by pluronic P85-PEI/TPGS complex nanoparticles to overcome drug resistance in lung cancer, Biomaterials. 33 (2012) 8613-8624
    S. Biswas, P.P. Deshpande, G. Navarro, et al., Lipid modified triblock PAMAM-based nanocarriers for siRNA drug co-delivery, Biomaterials. 34 (2013) 1289-1301
    C. Perez, A. Sanchez, D. Putnam, et al., Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA, J. Control. Release. 75 (2001) 211-224
    J. Lu, X. Chuan, H. Zhang, et al., Free paclitaxel loaded PEGylated-paclitaxel nanoparticles: Preparation and comparison with other paclitaxel systems in vitro and in vivo, Int. J. Pharm. 471 (2014) 525-535
    J. Wang, C.-F. Xu, A. Liu, et al., Delivery of siRNA with nanoparticles based on PEG--PLA block polymer for cancer therapy, Nanomedicine Nanotechnology, Biol. Med. 2 (2016) 464
    D.G. Abebe, R. Kandil, T. Kraus, et al., Three-Layered Biodegradable Micelles Prepared by Two-Step Self-Assembly of PLA-PEI-PLA and PLA-PEG-PLA Triblock Copolymers as Efficient Gene Delivery System, Macromol. Biosci. 15 (2015) 698-711
    K. Yan, H. Li, P. Li, et al., Self-assembled magnetic fluorescent polymeric micelles for magnetic resonance and optical imaging, Biomaterials. 35 (2014) 344-355
    Y. Chen, K. Ai, J. Liu, et al., Multifunctional envelope-type mesoporous silica nanoparticles for pH-responsive drug delivery and magnetic resonance imaging, Biomaterials. 60 (2015) 111-120
    J. Liu, T. Wei, J. Zhao, et al., Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance, Biomaterials. 91 (2016) 44-56
    L. Zhang, Y. Li, J.C. Yu, et al., Redox-responsive controlled DNA transfection and gene silencing based on polymer-conjugated magnetic nanoparticles, RSC Adv. 6 (2016) 72155-72164
    A. Amani, J.M. Begdelo, H. Yaghoubi, et al., Multifunctional magnetic nanoparticles for controlled release of anticancer drug, breast cancer cell targeting, MRI/fluorescence imaging, and anticancer drug delivery, J. Drug Deliv. Sci. Technol. 49 (2019) 534-546
    S.J.T. Rezaei, H.S. Abandansari, M.R. Nabid, et al., pH-responsive unimolecular micelles self-assembled from amphiphilic hyperbranched block copolymer for efficient intracellular release of poorly water-soluble anticancer drugs, J. Colloid Interface Sci. 425 (2014) 27-35
    A.F.M. El-Mahdy, T. Shibata, T. Kabashima, et al., Delivery of siRNA using siRNA/cationic vector complexes encapsulated in dendrimer-like polymeric DNAs, RSC Adv. 5 (2015) 32775-32785
    W.M. Ibrahim, A.H. AlOmrani, A.E.B. Yassin, Novel sulpiride-loaded solid lipid nanoparticles with enhanced intestinal permeability, Int. J. Nanomedicine. 9 (2014) 129
    Q. Wang, C. Li, T. Ren, et al., Poly (vinyl methyl ether/maleic anhydride)-Doped PEG--PLA Nanoparticles for Oral Paclitaxel Delivery To Improve Bioadhesive Efficiency, Mol. Pharm. 14 (2017) 3598-3608
    S.-J. Yang, F.-H. Lin, K.-C. Tsai, et al., Folic acid-conjugated chitosan nanoparticles enhanced protoporphyrin IX accumulation in colorectal cancer cells, Bioconjug. Chem. 21 (2010) 679-689
    F. Sadeghi, F. Hadizadeh, S. Sazmand, et al., Synthesis and self-assembly of biodegradable polyethylene glycol-poly (lactic acid) diblock copolymers as polymersomes for preparation of sustained release system of doxorubicin, Int. J. Pharm. Investig. 5 (2015) 134
    H.-K. Jang, B.S. Kim, Molecular recognition properties of biodegradable photo-crosslinked network based on poly (lactic acid) and poly (ethylene glycol), Macromol. Res. 21 (2013) 370-375
    B.W. Chieng, I.N. Azowa, W.M. Zin, et al., Effects of graphene nanopletelets on poly (lactic acid)/poly (ethylene glycol) polymer nanocomposites, in: Adv. Mater. Res., 2014: pp. 136-139
    T. Yildiz, R. Gu, S. Zauscher, et al., Doxorubicin-loaded protease-activated near-infrared fluorescent polymeric nanoparticles for imaging and therapy of cancer, Int. J. Nanomedicine. 13 (2018) 6961
    M. Mariano, F. Pilate, F.B. de Oliveira, et al., Preparation of cellulose nanocrystal-reinforced poly (lactic acid) nanocomposites through noncovalent modification with PLLA-based surfactants, ACS Omega. 2 (2017) 2678-2688
    G.F. Liang, Y.L. Zhu, B. Sun, et al., PLGA-based gene delivering nanoparticle enhance suppression effect of miRNA in HePG2 cells, Nanoscale Res. Lett. 6 (2011) 1-9
    S. Prabha, W.-Z. Zhou, J. Panyam, et al., Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles, Int. J. Pharm. 244 (2002) 105-115
    S.Y. Shann, C.M. Lau, S.N. Thomas, et al., Size-and charge-dependent non-specific uptake of PEGylated nanoparticles by macrophages, Int. J. Nanomedicine. 7 (2012) 799
    P. Pouponneau, J.-C. Leroux, S. Martel, Magnetic nanoparticles encapsulated into biodegradable microparticles steered with an upgraded magnetic resonance imaging system for tumor chemoembolization, Biomaterials. 30 (2009) 6327-6332
    Y. Zhuang, L. Zhao, L. Zheng, et al., Laponite-polyethylenimine based theranostic nanoplatform for tumor-targeting CT imaging and chemotherapy, ACS Biomater. Sci. Eng. 3 (2017) 431-442
    Y. Wu, W. Wang, Y. Chen, et al., The investigation of polymer-siRNA nanoparticle for gene therapy of gastric cancer in vitro, Int. J. Nanomedicine. 5 (2010) 129
    Y. Lee, S.H. Lee, J.S. Kim, et al., Controlled synthesis of PEI-coated gold nanoparticles using reductive catechol chemistry for siRNA delivery, J. Control. Release. 155 (2011) 3-10
    N.H. Hoang, T. Sim, C. Lim, et al., A nano-sized blending system comprising identical triblock copolymers with different hydrophobicity for fabrication of an anticancer drug nanovehicle with high stability and solubilizing capacity, Int. J. Nanomedicine. 14 (2019) 3629
    N. Wang, Z. Wang, S. Nie, et al., Biodegradable polymeric micelles coencapsulating paclitaxel and honokiol: a strategy for breast cancer therapy in vitro and in vivo, Int. J. Nanomedicine. 12 (2017) 1499
    Y. Wang, Y. Li, Q. Wang, et al., Pharmacokinetics and biodistribution of polymeric micelles of paclitaxel with pluronic P105/poly (caprolactone) copolymers, Die Pharm. Int. J. Pharm. Sci. 63 (2008) 446-452
    L.-C. Cheng, Y. Jiang, Y. Xie, et al., Novel amphiphilic folic acid-cholesterol-chitosan micelles for paclitaxel delivery, Oncotarget. 8 (2017) 3315
    T. Kong, J. Zeng, X. Wang, et al., Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles, Small. 4 (2008) 1537-1543
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (108) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return