Citation: | Sara Hosayni Nasab, Amin Amani, Hossein Ali Ebrahimi, Ali Asghar Hamidi. Design and preparation of a new multi-targeted drug delivery system using multifunctional nanoparticles for co-delivery of siRNA and paclitaxel[J]. Journal of Pharmaceutical Analysis, 2021, 11(2): 163-173. doi: 10.1016/j.jpha.2020.04.005 |
R.I. Al-Wabli, T.M.M.H. Sakr, et al., Platelet-12 lipoxygenase targeting via a newly synthesized curcumin derivative radiolabeled with technetium-99m, Chem. Cent. J. 10 (2016) 1-12
|
S. Yang, W. Li, H. Sun, et al., Resveratrol elicits anti-colorectal cancer effect by activating miR-34c-KITLG in vitro and in vivo, BMC Cancer. 15 (2015) 969
|
X. Deng, Q. Qiu, B. Yang, et al., synthesis and biological evaluation of novel peptides with anti-cancer and drug resistance-reversing activities, Eur. J. Med. Chem. 89 (2015) 540-548
|
Z. Hami, M. Amini, M. Ghazi-Khansari, et al., Doxorubicin-conjugated PLA-PEG-Folate based polymeric micelle for tumor-targeted delivery: Synthesis and in vitro evaluation, DARU, J. Pharm. Sci. 22 (2014) 1-7
|
G.L. Zwicke, G.A. Mansoori, C.J. Jeffery, Targeting of Cancer Nanotherapeutics, Nano Rev. 1 (2012) 1-11
|
Y.-I. Kim, Folate and carcinogenesis: evidence, mechanisms, and implications, J. Nutr. Biochem. 10 (1999) 66-88
|
J.B. Mason, Folate: effects on carcinogenesis and the potential for cancer chemoprevention, (1996)
|
A. Garcia-Bennett, M. Nees, B. Fadeel, In search of the Holy Grail: folate-targeted nanoparticles for cancer therapy, Biochem. Pharmacol. 81 (2011) 976-984
|
L.G. Baggetto, Deviant energetic metabolism of glycolytic cancer cells, Biochimie. 74 (1992) 959-974
|
O. Warburg, K. Posener, E. Negelein, The metabolism of cancer cells, Biochem Z. 152 (1924) 319-344
|
O. Warburg, F. Wind, E. Negelein, The metabolism of tumors in the body, J. Gen. Physiol. 8 (1927) 519
|
J. Li, F.-K. Ma, Q.-F. Dang, et al., Glucose-conjugated chitosan nanoparticles for targeted drug delivery and their specific interaction with tumor cells, Front. Mater. Sci. 8 (2014) 363-372
|
V. Mamaeva, R. Niemi, M. Beck, et al., Inhibiting notch activity in breast cancer stem cells by glucose functionalized nanoparticles carrying $γ$-secretase inhibitors, Mol. Ther. 24 (2016) 926-936
|
M. Wang, M. Thanou, Targeting nanoparticles to cancer, Pharmacol. Res. 62 (2010) 90-99
|
G.-F. Hao, G.-F. Yang, C.-G. Zhan, Structure-based methods for predicting target mutation-induced drug resistance and rational drug design to overcome the problem, Drug Discov. Today. 17 (2012) 1121-1126
|
F. Kanzawa, K. Nishio, T. Ishida, et al., Anti-tumour activities of a new benzo [c] phenanthridine agent, 2, 3-(methylenedioxy)-5-methyl-7-hydroxy-8-methoxybenzo [c] phenanthridinium hydrogensulphate dihydrate (NK109), against several drug-resistant human tumour cell lines, Br. J. Cancer. 76 (1997) 571-581
|
Q. He, J. Liu, X. Sun, et al., Preparation and characteristics of DNA-nanoparticles targeting to hepatocarcinoma cells, World J. Gastroenterol. 10 (2004) 660-663
|
A. Camirand, Y. Lu, M. Pollak, Co-targeting HER2/ErbB2 and insulin-like growth factor-1 receptors causes synergistic inhibition of growth in HER2-overexpressing breast cancer cells., Med. Sci. Monit. 8 (2002) BR521--BR526
|
M. Mancini, M.B. Gariboldi, E. Taiana, et al., Co-targeting the IGF system and HIF-1 inhibits migration and invasion by (triple-negative) breast cancer cells, Br. J. Cancer. 110 (2014) 2865
|
M. Kumar, M. Yigit, G. Dai, et al., Image-guided breast tumor therapy using a small interfering RNA nanodrug, Cancer Res. 70 (2010) 7553-7561
|
Y. Patil, J. Panyam, Polymeric nanoparticles for siRNA delivery and gene silencing, Int. J. Pharm. 367 (2009) 195-203
|
S.F. Peng, H.K. Hsu, C.C. Lin, et al., Novel PEI/Poly-γ-gutamic acid nanoparticles for high efficient siRNA and plasmid DNA co-delivery, Molecules. 22 (2017) 1-16
|
X.Z. Yang, S. Dou, T.M. Sun, et al., Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy, J. Control. Release. 156 (2011) 203-211
|
S. Kapse-Mistry, T. Govender, R. Srivastava, et al., Nanodrug delivery in reversing multidrug resistance in cancer cells, Front. Pharmacol. 5 JUL (2014) 1-31
|
Y. Yang, H. Zhao, Y. Jia, et al., A novel gene delivery composite system based on biodegradable folate-poly (ester amine) polymer and thermosensitive hydrogel for sustained gene release, Sci. Rep. 6 (2016) 1-12
|
J. Hu, M. Zhu, K. Liu, et al., A biodegradable polyethylenimine-based vector modified by trifunctional peptide R18 for enhancing gene transfection efficiency in vivo, PLoS One. 11 (2016) 1-21
|
S. Shi, X. Zhu, Q.F. Guo, et al., Self-assembled mPEG-PCL-g-PEI micelles for simultaneous codelivery of chemotherapeutic drugs and DNA: Synthesis and characterization in vitro, Int. J. Nanomedicine. 7 (2012) 1749-1759
|
A. Amani, T. Kabiri, S. Shafiee, et al., Preparation and characterization of PLA-PEG-PLA/PEI/DNA nanoparticles for improvement of transfection efficiency and controlled release of DNA in gene delivery systems, Iran. J. Pharm. Res. IJPR. 18 (2019) 125
|
L. Chen, F. Ji, Y. Bao, et al., Biocompatible cationic pullulan-g-desoxycholic acid-g-PEI micelles used to co-deliver drug and gene for cancer therapy, Mater. Sci. Eng. C. 70 (2017) 418-429
|
S. Shi, K. Shi, L. Tan, et al., The use of cationic MPEG-PCL-g-PEI micelles for co-delivery of Msurvivin T34A gene and doxorubicin, Biomaterials. 35 (2014) 4536-4547
|
J. Shen, Q. Yin, L. Chen, et al., Co-delivery of paclitaxel and survivin shRNA by pluronic P85-PEI/TPGS complex nanoparticles to overcome drug resistance in lung cancer, Biomaterials. 33 (2012) 8613-8624
|
S. Biswas, P.P. Deshpande, G. Navarro, et al., Lipid modified triblock PAMAM-based nanocarriers for siRNA drug co-delivery, Biomaterials. 34 (2013) 1289-1301
|
C. Perez, A. Sanchez, D. Putnam, et al., Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA, J. Control. Release. 75 (2001) 211-224
|
J. Lu, X. Chuan, H. Zhang, et al., Free paclitaxel loaded PEGylated-paclitaxel nanoparticles: Preparation and comparison with other paclitaxel systems in vitro and in vivo, Int. J. Pharm. 471 (2014) 525-535
|
J. Wang, C.-F. Xu, A. Liu, et al., Delivery of siRNA with nanoparticles based on PEG--PLA block polymer for cancer therapy, Nanomedicine Nanotechnology, Biol. Med. 2 (2016) 464
|
D.G. Abebe, R. Kandil, T. Kraus, et al., Three-Layered Biodegradable Micelles Prepared by Two-Step Self-Assembly of PLA-PEI-PLA and PLA-PEG-PLA Triblock Copolymers as Efficient Gene Delivery System, Macromol. Biosci. 15 (2015) 698-711
|
K. Yan, H. Li, P. Li, et al., Self-assembled magnetic fluorescent polymeric micelles for magnetic resonance and optical imaging, Biomaterials. 35 (2014) 344-355
|
Y. Chen, K. Ai, J. Liu, et al., Multifunctional envelope-type mesoporous silica nanoparticles for pH-responsive drug delivery and magnetic resonance imaging, Biomaterials. 60 (2015) 111-120
|
J. Liu, T. Wei, J. Zhao, et al., Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance, Biomaterials. 91 (2016) 44-56
|
L. Zhang, Y. Li, J.C. Yu, et al., Redox-responsive controlled DNA transfection and gene silencing based on polymer-conjugated magnetic nanoparticles, RSC Adv. 6 (2016) 72155-72164
|
A. Amani, J.M. Begdelo, H. Yaghoubi, et al., Multifunctional magnetic nanoparticles for controlled release of anticancer drug, breast cancer cell targeting, MRI/fluorescence imaging, and anticancer drug delivery, J. Drug Deliv. Sci. Technol. 49 (2019) 534-546
|
S.J.T. Rezaei, H.S. Abandansari, M.R. Nabid, et al., pH-responsive unimolecular micelles self-assembled from amphiphilic hyperbranched block copolymer for efficient intracellular release of poorly water-soluble anticancer drugs, J. Colloid Interface Sci. 425 (2014) 27-35
|
A.F.M. El-Mahdy, T. Shibata, T. Kabashima, et al., Delivery of siRNA using siRNA/cationic vector complexes encapsulated in dendrimer-like polymeric DNAs, RSC Adv. 5 (2015) 32775-32785
|
W.M. Ibrahim, A.H. AlOmrani, A.E.B. Yassin, Novel sulpiride-loaded solid lipid nanoparticles with enhanced intestinal permeability, Int. J. Nanomedicine. 9 (2014) 129
|
Q. Wang, C. Li, T. Ren, et al., Poly (vinyl methyl ether/maleic anhydride)-Doped PEG--PLA Nanoparticles for Oral Paclitaxel Delivery To Improve Bioadhesive Efficiency, Mol. Pharm. 14 (2017) 3598-3608
|
S.-J. Yang, F.-H. Lin, K.-C. Tsai, et al., Folic acid-conjugated chitosan nanoparticles enhanced protoporphyrin IX accumulation in colorectal cancer cells, Bioconjug. Chem. 21 (2010) 679-689
|
F. Sadeghi, F. Hadizadeh, S. Sazmand, et al., Synthesis and self-assembly of biodegradable polyethylene glycol-poly (lactic acid) diblock copolymers as polymersomes for preparation of sustained release system of doxorubicin, Int. J. Pharm. Investig. 5 (2015) 134
|
H.-K. Jang, B.S. Kim, Molecular recognition properties of biodegradable photo-crosslinked network based on poly (lactic acid) and poly (ethylene glycol), Macromol. Res. 21 (2013) 370-375
|
B.W. Chieng, I.N. Azowa, W.M. Zin, et al., Effects of graphene nanopletelets on poly (lactic acid)/poly (ethylene glycol) polymer nanocomposites, in: Adv. Mater. Res., 2014: pp. 136-139
|
T. Yildiz, R. Gu, S. Zauscher, et al., Doxorubicin-loaded protease-activated near-infrared fluorescent polymeric nanoparticles for imaging and therapy of cancer, Int. J. Nanomedicine. 13 (2018) 6961
|
M. Mariano, F. Pilate, F.B. de Oliveira, et al., Preparation of cellulose nanocrystal-reinforced poly (lactic acid) nanocomposites through noncovalent modification with PLLA-based surfactants, ACS Omega. 2 (2017) 2678-2688
|
G.F. Liang, Y.L. Zhu, B. Sun, et al., PLGA-based gene delivering nanoparticle enhance suppression effect of miRNA in HePG2 cells, Nanoscale Res. Lett. 6 (2011) 1-9
|
S. Prabha, W.-Z. Zhou, J. Panyam, et al., Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles, Int. J. Pharm. 244 (2002) 105-115
|
S.Y. Shann, C.M. Lau, S.N. Thomas, et al., Size-and charge-dependent non-specific uptake of PEGylated nanoparticles by macrophages, Int. J. Nanomedicine. 7 (2012) 799
|
P. Pouponneau, J.-C. Leroux, S. Martel, Magnetic nanoparticles encapsulated into biodegradable microparticles steered with an upgraded magnetic resonance imaging system for tumor chemoembolization, Biomaterials. 30 (2009) 6327-6332
|
Y. Zhuang, L. Zhao, L. Zheng, et al., Laponite-polyethylenimine based theranostic nanoplatform for tumor-targeting CT imaging and chemotherapy, ACS Biomater. Sci. Eng. 3 (2017) 431-442
|
Y. Wu, W. Wang, Y. Chen, et al., The investigation of polymer-siRNA nanoparticle for gene therapy of gastric cancer in vitro, Int. J. Nanomedicine. 5 (2010) 129
|
Y. Lee, S.H. Lee, J.S. Kim, et al., Controlled synthesis of PEI-coated gold nanoparticles using reductive catechol chemistry for siRNA delivery, J. Control. Release. 155 (2011) 3-10
|
N.H. Hoang, T. Sim, C. Lim, et al., A nano-sized blending system comprising identical triblock copolymers with different hydrophobicity for fabrication of an anticancer drug nanovehicle with high stability and solubilizing capacity, Int. J. Nanomedicine. 14 (2019) 3629
|
N. Wang, Z. Wang, S. Nie, et al., Biodegradable polymeric micelles coencapsulating paclitaxel and honokiol: a strategy for breast cancer therapy in vitro and in vivo, Int. J. Nanomedicine. 12 (2017) 1499
|
Y. Wang, Y. Li, Q. Wang, et al., Pharmacokinetics and biodistribution of polymeric micelles of paclitaxel with pluronic P105/poly (caprolactone) copolymers, Die Pharm. Int. J. Pharm. Sci. 63 (2008) 446-452
|
L.-C. Cheng, Y. Jiang, Y. Xie, et al., Novel amphiphilic folic acid-cholesterol-chitosan micelles for paclitaxel delivery, Oncotarget. 8 (2017) 3315
|
T. Kong, J. Zeng, X. Wang, et al., Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles, Small. 4 (2008) 1537-1543
|