Citation: | Marziyeh Shalchi Tousi, Houri Sepehri, Sepideh Khoee, Mahdi Moridi Farimani, Ladan Delphi, Fariba Mansourizadeh. Evaluation of apoptotic effects of mPEG-b-PLGA coated iron oxide nanoparticles as a eupatorin carrier on DU-145 and LNCaP human prostate cancer cell lines[J]. Journal of Pharmaceutical Analysis, 2021, 11(1): 108-121. doi: 10.1016/j.jpha.2020.04.002 |
F. Bray, J. Ferlay, I. Soerjomataram, et al., Global cancer Statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin. 68 (2018) 394-424. doi: 10.3322/caac.21492
|
R. Chen, S. Ren, M.K. Yiu, et al., Prostate cancer in Asia: a collaborative report, Asian J. Urol. 1 (2014) 15-29. doi: 10.1016/j.ajur.2014.08.007
|
A. Rodriguez-Casado, The health potential of fruits and vegetables phytochemicals: notable examples, Crit. Rev. Food Sci. Nutr. 56 (2016) 1097-1107. doi: 10.1080/10408398.2012.755149
|
D. Raffa, B. Maggio, M.V. Raimondi, et al., Recent discoveries of anticancer flavonoids, Eur. J. Med. Chem. 142 (2017) 213-228. doi: 10.1016/j.ejmech.2017.07.034
|
I. Doleckova, L. Rarova, J. Gruz, et al., Antiproliferative and antiangiogenic effects of flavone eupatorin, an active constituent of chloroform extract of Orthosiphon stamineus leaves, Fitoterapia. 83 (2012) 1000-1007. doi: 10.1016/j.fitote.2012.06.002
|
N.A. Razak, N. Abu, W.Y. Ho, et al., Cytotoxicity of eupatorin in MCF-7 and MDA-MB-231 human breast cancer cells via cell cycle arrest, anti-angiogenesis and induction of apoptosis, Sci. Rep. 9 (2019) 1-12. doi: 10.1038/s41598-018-37796-w
|
M. Laavola, R. Nieminen, M. Yam, et al., Flavonoids eupatorin and sinensetin present in Orthosiphon stamineus leaves inhibit inflammatory gene expression and STAT1 activation, Planta Med. 78 (2012) 779-786. doi: 10.1055/s-0031-1298458
|
V. Androutsopoulos, R.R.J. Arroo, J.F. Hall, et al., Antiproliferative and cytostatic effects of the natural product eupatorin on MDA-MB-468 human breast cancer cells due to CYP1-mediated metabolism, Breast Cancer Res. 10 (2008) R39. doi: 10.1186/bcr2090
|
V. Sanna, I. a. Siddiqui, M. Sechi, et al., Nanoformulation of natural products for prevention and therapy of prostate cancer, Cancer Lett. 334 (2013) 142-151. doi: 10.1016/j.canlet.2012.11.037
|
I.A. Siddiqui, V. Sanna, Impact of nanotechnology on the delivery of natural products for cancer prevention and therapy, Mol. Nutr. Food Res. 60 (2016) 1330-1341. doi: 10.1002/mnfr.201600035
|
D. Kashyap, H.S. Tuli, M.B. Yerer, et al., Natural product-based nanoformulations for cancer therapy: opportunities and challenges, Semin. Cancer Biol. (2019) 1-19. doi: 10.1016/j.semcancer.2019.08.014
|
G. Pandey, N. Deshmukh, V. Science, Usefulness of nanotechnology for herbal medicines, Plant Arch. 13 (2015) 617-621
|
H. Amawi, C.R. Ashby, A.K. Tiwari, Cancer chemoprevention through dietary flavonoids: what’s limiting?, Chin. J. Cancer. 36 (2017) 1-13. doi: 10.1186/s40880-017-0217-4
|
N. Hamzian, M. Hashemi, M. Ghorbani, et al., Preparation, optimization and toxicity evaluation of (SPION-PLGA) ±PEG nanoparticles loaded with gemcitabine as a multifunctional nanoparticle for therapeutic and diagnostic applications, Iran. J. Pharm. Res. 16 (2017) 8-21
|
N. Muhamad, T. Plengsuriyakarn, K. Na-Bangchang, Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review, Int. J. Nanomedicine. 13 (2018) 3921-3935. doi: 10.2147/IJN.S165210
|
B.V. Bonifacio, P.B. da Silva, M. Aparecido dos Santos Ramos, et al., Nanotechnology-based drug delivery systems and herbal medicines: a review, Int. J. Nanomedicine. 9 (2013) 1-15. doi: 10.2147/IJN.S52634
|
A.K. Sachan, A. Gupta, A review on nanotized herbal drugs, Int. J. Pharm. Sci. Res. 6 (2015) 961-970. doi: 10.13040/IJPSR.0975-8232.6(3).961-70
|
Y.H. Choi, H.K. Han, Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics, J. Pharm. Investig. 48 (2018) 43-60. doi: 10.1007/s40005-017-0370-4
|
C.L. Ventola, Progress in nanomedicine: approved and investigational nanodrugs, P&T community. 42 (2017) 742-755. doi: 10.1016/j.psychres.2007.07.030
|
A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials. 26 (2005) 3995-4021. doi: 10.1016/j.biomaterials.2004.10.012
|
Z. Hajikarimi, S. Khoei, S. Khoee, et al., Evaluation of the cytotoxic effects of PLGA coated iron oxide nanoparticles as a carrier of 5- fluorouracil and mega-voltage x-ray radiation in DU145 prostate cancer cell line, IEEE Trans. Nanobioscience. 13 (2014) 403-408. doi: 10.1109/TNB.2014.2328868
|
K.E. Uhrich, S.M. Cannizzaro, R.S. Langer, et al., Polymeric systems for controlled drug release, Chem. Rev. 99 (1999) 3181-3198. doi: 10.1021/cr940351u
|
C. Xu, D. Miranda-Nieves, J.A. Ankrum, et al., Tracking mesenchymal stem cells with iron oxide nanoparticle loaded poly(lactide-co-glycolide) microparticles, Nano Lett. 12 (2012) 4131-4139. doi: 10.1021/nl301658q
|
N. Schleich, P. Sibret, P. Danhier, et al., Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging, Int. J. Pharm. 447 (2013) 94-101. doi: 10.1016/j.ijpharm.2013.02.042
|
F. Matloubi Moghddam, M. Moridi Farimani, S. Taheri, et al., Chemical constituents from Salvia macrosiphon, Chem. Nat. Compd. 44 (2008) 518-519. doi: 10.1007/s10600-008-9111-2
|
S. Khoee, Y. Bagheri, A. Hashemi, Composition controlled synthesis of PCL-PEG Janus nanoparticles: magnetite nanoparticles prepared from one-pot photo-click reaction, Nanoscale. 7 (2015) 4134-4148. doi: 10.1039/c4nr06590e
|
S. Khoee, K. Hemati, Synthesis of magnetite/polyamino-ester dendrimer based on PCL/PEG amphiphilic copolymers via convergent approach for targeted diagnosis and therapy, Polymer (Guildf). 54 (2013) 5574-5585. doi: 10.1016/j.polymer.2013.07.074
|
M. Ashjari, S. Khoee, A.R. Mahdavian, A multiple emulsion method for loading 5-fluorouracil into a magnetite-loaded nanocapsule: a physicochemical investigation, Polym. Int. 61 (2012) 850-859. doi: 10.1002/pi.4154
|
M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72 (1976) 248-254. doi: 10.1016/0003-2697(76)90527-3
|
J. Xie, Z. Yang, C. Zhou, et al., Nanotechnology for the delivery of phytochemicals in cancer therapy, Biotechnol. Adv. 34 (2016) 343-353. doi: 10.1016/j.biotechadv.2016.04.002
|
X. Bao, M. Gao, H. Xu, et al., A novel oleanolic acid-loaded PLGA-TPGS nanoparticle for liver cancer treatment, Drug Dev. Ind. Pharm. 9045 (2014) 1-11. doi: 10.3109/03639045.2014.938081
|
Y. Zhang, X. Chen, C. Gueydan, et al., Plasma membrane changes during programmed cell deaths, Cell Res. 28 (2018) 9-21. doi: 10.1038/cr.2017.133
|
J.R. Eidet, L. Pasovic, R. Maria, et al., Objective assessment of changes in nuclear morphology and cell distribution following induction of apoptosis, Diagn. Pathol. 9 (2014) 1-9. doi: 10.1186/1746-1596-9-92
|
Z. Darzynkiewicz, H.D. Halicka, H. Zhao, Analysis of cellular DNA content by flow and laser scanning cytometry, Adv. Exp. Med. Biol. 675 (2010) 137-147. doi: 10.1007/978-1-4419-6199-0_9
|
N. Kekre, C. Griffin, J. McNulty, et al., Pancratistatin causes early activation of caspase-3 and the flipping of phosphatidyl serine followed by rapid apoptosis specifically in human lymphoma cells, Cancer Chemother. Pharmacol. 56 (2005) 29-38. doi: 10.1007/s00280-004-0941-8
|
V. Papaliagkas, A. Anogianaki, G. Anogianakis, et al., The proteins and the mechanisms of apoptosis: a mini-review of the fundamentals, Hippokratia. 11 (2007) 108-113
|
J. Lopez, S.W.G. Tait, Mitochondrial apoptosis: killing cancer using the enemy within, Br. J. Cancer. 112 (2015) 957-962. doi: 10.1038/bjc.2015.85
|
J.F. Buyel, Plants as sources of natural and recombinant anti-cancer agents, Biotechnol. Adv. 36 (2018) 506-520. doi: 10.1016/j.biotechadv.2018.02.002
|
Y. Zhou, A. Zhang, H. Sun, et al., Plant-derived natural products as leads to antitumor drugs, Plant Sci. Today. 1 (2014) 46-61. doi: 10.14719/pst.2014.1.2.17
|
A.L. Salmela, J. Pouwels, A. Kukkonen-Macchi, et al., The flavonoid eupatorin inactivates the mitotic checkpoint leading to polyploidy and apoptosis, Exp. Cell Res. 318 (2012) 578-592. doi: 10.1016/j.yexcr.2011.12.014
|
A.FA. Aisha, A.M.S.A. Majid, Z. Ismail, Preparation and characterization of nano liposomes of Orthosiphon stamineus ethanolic extract in soybean phospholipids, BMC Biotechnol. 14 (2014) 23. doi: 10.1186/1472-6750-14-23
|
D. Bobo, K.J. Robinson, J. Islam, et al., Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date, Pharm. Res. 33 (2016) 2373-2387. doi: 10.1007/s11095-016-1958-5
|
R.A. Revia, M. Zhang, Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances, Mater Today (Kidlington). 19 (2017) 157-168. doi: 10.1016/j.mattod.2015.08.022.Magnetite
|
C. Blanco-Andujar, A. Walter, G. Cotin, et al., Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia, Nanomedicine. 11 (2016) 1889-1910. doi: 10.2217/nnm-2016-5001
|
L. Tong, M. Zhao, S. Zhu, et al., Synthesis and application of superparamagnetic iron oxide nanoparticles in targeted therapy and imaging of cancer, Front. Med. 5 (2011) 379-387. doi: 10.1007/s11684-011-0162-6
|
D.N. Kapoor, A. Bhatia, R. Kaur, et al., PLGA: a unique polymer for drug delivery, Ther. Deliv. 6 (2015) 41-58. doi: 10.4155/tde.14.91
|
H.B. Nair, B. Sung, V.R. Yadav, et al., Delivery of antiinflammatory nutraceuticals by nanoparticles for the prevention and treatment of cancer, Biochem. Pharmacol. 80 (2010) 1833-1843. doi: 10.1016/j.bcp.2010.07.021
|
M. Khoobchandani, a. Zambre, K. Katti, et al., Green nanotechnology from brassicaceae: development of broccoli phytochemicals-encapsulated gold nanoparticles and their applications in nanomedicine, Int. J. Green Nanotechnol. 1 (2013). doi: 10.1177/1943089213509474
|
A.M. Nassir, N. Shahzad, I.A.A. Ibrahim, et al., Resveratrol-loaded PLGA nanoparticles mediated programmed cell death in prostate cancer cells, Saudi Pharm. J. 26 (2018) 876-885. doi: 10.1016/j.jsps.2018.03.009
|
A. Mukerjee, J.K. Vishwanatha, Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy, Anticancer Res. 29 (2009) 3867-3875. http://www.ncbi.nlm.nih.gov/pubmed/19846921
|
S. Lecomte, F. Demay, F. Ferri, et al., Phytochemicals targeting estrogen receptors : beneficial rather than adverse effects ?, Int. J. Mol. Sci. 18 (2017) 1-19. doi: 10.3390/ijms18071381
|
T. Boam, Anti-androgenic effects of flavonols in prostate cancer, Ecancermedicalscience. 9 (2015) 1-8. doi: 10.3332/ecancer.2015.585
|
M.K. Sivonova, P. Kaplan, Z. Tatarkova, et al., Androgen receptor and soy isoflavones in prostate cancer, Mol. Clin. Oncol. 10 (2019) 191-204. doi: 10.3892/mco.2018.1792
|
S. Estevez, M.T. Marrero, J. Quintana, et al., Eupatorin-induced cell death in human leukemia cells is dependent on caspases and activates the mitogen-activated protein kinase pathway, PLoS One. 9 (2014) e112536. doi: 10.1371/journal.pone.0112536
|
N.N. Sarvestani, H. Sepehri, L. Delphi, et al., Eupatorin and salvigenin potentiate doxorubicin-induced apoptosis and cell cycle arrest in HT-29 and SW948 human colon cancer cells, Asian Pacific J. Cancer Prev. 19 (2018) 131-139. doi: 10.22034/APJCP.2018.19.1.131
|
K. Lee, D. Hyun Lee, Y.J. Jung, et al., The natural flavone eupatorin induces cell cycle arrest at the G2/M phase and apoptosis in HeLa cells, Appl. Biol. Chem. 59 (2016) 193-199. doi: 10.1007/s13765-016-0160-0
|
V.P. Androutsopoulos, A.M. Tsatsakis, Benzo[a]pyrene sensitizes MCF7 breast cancer cells to induction of G1 arrest by the natural flavonoid eupatorin-5-methyl ether, via activation of cell signaling proteins and CYP1-mediated metabolism, Toxicol. Lett. 230 (2014) 304-313. doi: 10.1016/j.toxlet.2013.08.005
|
Y. Wang, P. Liu, L. Qiu, et al., Toxicity and therapy of cisplatin-loaded EGF modified mPEG-PLGA-PLL nanoparticles for SKOV3 cancer in mice, Biomaterials. 34 (2013) 4068-4077. doi: 10.1016/j.biomaterials.2012.12.033
|
C. Huang, Y. Sun, M. Shen, et al., Altered cell cycle arrest by multifunctional drug-loaded enzymatically-triggered nanoparticles, ACS Appl. Mater. Interfaces. 8 (2016) 1360-1370. doi: 10.1021/acsami.5b10241
|
Y.-C. Lin, J.-Y. Kuo, C.-C. Hsu, et al., Optimizing manufacture of liposomal berberine with evaluation of its antihepatoma effects in a murine xenograft model, Int. J. Pharm. 441 (2013) 381-388. doi: 10.1016/j.ijpharm.2012.11.017
|
J. Kim, B.C. Yung, W.J. Kim, et al., Combination of nitric oxide and drug delivery systems: tools for overcoming drug resistance in chemotherapy, J Control Release. 263 (2018) 223-230. doi: 10.1016/j.jconrel.2016.12.026.Combination
|
S. Korde Choudhari, M. Chaudhary, S. Bagde, et al., Nitric oxide and cancer: a review, World J. Surg. Oncol. 11 (2013) 1. doi: 10.1186/1477-7819-11-118
|
H. Vahora, M.A. Khan, U. Alalami, et al., The potential role of nitric oxide in halting cancer progression through chemoprevention, J. Cancer Prev. 21 (2016) 1-12. doi: 10.15430/jcp.2016.21.1.1
|
F. Vanini, K. Kashfi, N. Nath, The dual role of iNOS in cancer, Redox Biol. 6 (2015) 334-343. doi: 10.1016/j.redox.2015.08.009
|
H. Koizumi, J. Yu, R. Hashimoto, et al., Involvement of androgen receptor in nitric oxide production induced by icariin in human umbilical vein endothelial cells, FEBS Lett. 584 (2010) 2440-2444. doi: 10.1016/j.febslet.2010.04.049
|
M. V Cronauer, Y. Ince, R. Engers, et al., Nitric oxide-mediated inhibition of androgen receptor activity : possible implications for prostate cancer progression, Oncogene. 26 (2007) 1875-1884. doi: 10.1038/sj.onc.1209984
|
N.N. Sarvestani, H. Sepehri, M.M. Farimani, Anticancer effect of eupatorin via Bax/Bcl-2 and mitochondrial membrane potential changes through ros mediated pathway in human colon cancer, Int. J. Pharmacogn. Phytochem. Res. 7 (2015) 1039-1046
|