Citation: | Christelle Machon, Frédéric Catez, Nicole Dalla Venezia, Floriane Vanhalle, Laetitia Guyot, Anne Vincent, Maxime Garcia, Béatrice Roy, Jean-Jacques Diaz, Jérôme Guitton. Study of intracellular anabolism of 5-fluorouracil and incorporation in nucleic acids based on an LC-HRMS method[J]. Journal of Pharmaceutical Analysis, 2021, 11(1): 77-87. doi: 10.1016/j.jpha.2020.04.001 |
D.B. Longley, D.P. Harkin, P.G. Johnston, 5-fluorouracil: mechanisms of action and clinical strategies, Nat. Rev. Cancer. 3 (2003) 330-338
|
N. Tsesmetzis, C.B.J. Paulin, S.G. Rudd, et al., Nucleobase and Nucleoside Analogues: Resistance and Re-Sensitisation at the Level of Pharmacokinetics, Pharmacodynamics and Metabolism, Cancers (Basel). 10 (2018) e10419
|
T. Samuelsson, Interactions of transfer RNA pseudouridine synthases with RNAs substituted with fluorouracil, Nucl. Acids Res. 19 (1991) 6139-6144
|
W.B. Parker, Y.C. Cheng, Metabolism and mechanism of action of 5-fluorouracil, Pharmacol. Ther. 48 (1990) 381-395
|
G. Weckbecker, D.O. Keppler, Substrate properties of 5-fluorouridine diphospho sugars detected in hepatoma cells, Biochem. Pharmacol. 33 (1984) 2291-2298
|
A. Prochazkova, S. Liu, H. Friess, et al., Determination of 5-fluorouracil and 5-fluoro-2’-deoxyuridine-5’-monophosphate in pancreatic cancer cell line and other biological materials using capillary electrophoresis, J. Chromatogr. A 916 (2001) 215-224
|
H. Ishii, M. Shimada, H. Yamaguchi, et al., A simultaneous determination method for 5-fluorouracil and its metabolites in human plasma with linear range adjusted by in-source collision-induced dissociation using hydrophilic interaction liquid chromatography-electrospray ionization-tandem mass spectrometry, Biomed. Chromatogr. 30 (2016) 1882-1886
|
M.J. Deenen, H. Rosing, M.J. Hillebrand, et al., Quantitative determination of capecitabine and its six metabolites in human plasma using liquid chromatography coupled to electrospray tandem mass spectrometry, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 913-914 (2013) 30-40
|
F. Casale, R. Canaparo, L. Serpe, et al., Plasma concentrations of 5-fluorouracil and its metabolites in colon cancer patients, Pharmacol. Res. 50 (2004) 173-179
|
P. Deng, C. Ji, X. Dai, et al., Simultaneous determination of capecitabine and its three nucleoside metabolites in human plasma by high performance liquid chromatography-tandem mass spectrometry, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 989 (2015) 71-79
|
J.L. Holleran, J.L. Eiseman, R.A. Parise, et al., LC-MS/MS assay for the quantitation of FdCyd and its metabolites FdUrd and FU in human plasma, J. Pharmaceut. Biomed. 129 (2016) 359-366
|
J. Ciccolini, L. Peillard, C. Aubert, et al., Monitoring of the intracellular activation of 5-fluorouracil to deoxyribonucleotides in HT29 human colon cell line: application to modulation of metabolism and cytotoxicity study, Fund. Clin. Pharmacol. 14 (2000) 147-154
|
D. Carli, M. Honorat, S. Cohen, et al., Simultaneous quantification of 5-FU, 5-FUrd, 5-FdUrd, 5-FdUMP, dUMP and TMP in cultured cell models by LC-MS/MS, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877 (2009) 2937-2944
|
Y. Tsume, C.J. Provoda, G.L. Amidon, The achievement of mass balance by simultaneous quantification of floxuridine prodrug, floxuridine, 5-fluorouracil, 5-dihydrouracil, α-fluoro-β-ureidopropionate, α-fluoro-β-alanine using LC-MS, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879 (2011) 915-920
|
W.R. Wrightson, S.R. Myers, S. Galandiuk, HPLC analysis of 5-FU and FdUMP in tissue and serum, Biochem. Biophys. Res. Commun. 216 (1995) 808-813
|
E.J.B. Derissen, B.A.W. Jacobs, A.D.R. Huitema, et al., Exploring the intracellular pharmacokinetics of the 5-fluorouracil nucleotides during capecitabine treatment, Brit. J. Clin. Pharmaco. 81 (2016) 949-957
|
E.J.B. Derissen, M.J.X. Hillebrand, H. Rosing, et al., Development of an LC-MS/MS assay for the quantitative determination of the intracellular 5-fluorouracil nucleotides responsible for the anticancer effect of 5-fluorouracil, J. Pharmaceut. Biomed. 110 (2015) 58-66
|
C. Benz, E. Cadman, Modulation of 5-fluorouracil metabolism and cytotoxicity by antimetabolite pretreatment in human colorectal adenocarcinoma HCT-8, Cancer Res. 41 (1981) 994-999
|
G.J. Peters, E. Laurensse, A. Leyva, et al., Sensitivity of human, murine, and rat cells to 5-fluorouracil and 5’-deoxy-5-fluorouridine in relation to drug-metabolizing enzymes, Cancer Res. 46 (1986) 20-28
|
M. Keniry, C. Benz, R.H. Shafer, et al., Noninvasive spectroscopic analysis of fluoropyrimidine metabolism in cultured tumor cells, Cancer Res. 46 (1986) 1754-1758
|
A. el-Tahtawy, W. Wolf, In vivo measurements of intratumoral metabolism, modulation, and pharmacokinetics of 5-fluorouracil, using 19F nuclear magnetic resonance spectroscopy, Cancer Res. 51 (1991) 5806-5812
|
G.J. Peters, P. Noordhuis, A. Komissarov, et al., Quantification of 5-fluorouracil incorporation into RNA of human and murine tumors as measured with a sensitive gas chromatography-mass spectrometry assay, Anal. Biochem. 231 (1995) 157-163
|
Y.J.L. Kamm, G.J. Peters, W.E. Hull, et al., Correlation between 5-fluorouracil metabolism and treatment response in two variants of C26 murine colon carcinoma, Brit. J. Cancer. 89 (2003) 754-762
|
P. Noordhuis, U. Holwerda, C.L. Van der Wilt, et al., 5-Fluorouracil incorporation into RNA and DNA in relation to thymidylate synthase inhibition of human colorectal cancers, Ann. Oncol. 15 (2004) 1025-1032
|
H.S. Pettersen, T. Visnes, C.B. Vagboe, et al., UNG-initiated base excision repair is the major repair route for 5-fluorouracil in DNA, but 5-fluorouracil cytotoxicity depends mainly on RNA incorporation, Nucl. Acids Res. 39 (2011) 8430-8444
|
T. Ginsburg-Shmuel, M. Haas, M. Schumann, et al., 5-OMe-UDP is a potent and selective P2Y(6)-receptor agonist, J. Med. Chem. 53 (2010) 1673-1685
|
W.-Y. Tsang, B.M. Wood, F.M. Wong, et al., Proton transfer from C-6 of uridine 5’-monophosphate catalyzed by orotidine 5’-monophosphate decarboxylase: formation and stability of a vinyl carbanion intermediate and the effect of a 5-fluoro substituent, J. Am. Chem. Soc. 134 (2012) 14580-14594
|
J. Beres, W.G. Bentrude, A. Kalman, et al., Synthesis, structure, and antitumor and antiviral activities of a series of 5-halouridine cyclic 3’,5’-monophosphates, J. Med. Chem. 29 (1986) 488-493
|
B. Roy, I. Lefebvre, J.-Y. Puy, et al., A facile and effective synthesis of lamivudine 5′-diphosphate, Tetrahedron Lett. 52 (2011) 1250-1252
|
P. Gripon, S. Rumin, S. Urban, et al. Infection of a human hepatoma cell line by hepatitis B virus, Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 15655-15660
|
E.P. Quinlivan, J.F. Gregory, DNA digestion to deoxyribonucleoside: a simplified one-step procedure, Anal. Biochem. 373 (2008) 383-385
|
S. Belin, A. Beghin, E. Solano-Gonzalez, et al., Dysregulation of ribosome biogenesis and translational capacity is associated with tumor progression of human breast cancer cells, PLoS ONE. 4 (2009) e7147
|
C. Machon, L.P. Jordheim, J.-Y. Puy, et al., Fully validated assay for the quantification of endogenous nucleoside mono- and triphosphates using online extraction coupled with liquid chromatography-tandem mass spectrometry, Anal Bioanal Chem. 406 (2014) 2925-2941
|
A.R. Van Rompay, M. Johansson, A. Karlsson, Phosphorylation of deoxycytidine analog monophosphates by UMP-CMP kinase: molecular characterization of the human enzyme, Mol. Pharmacol. 56 (1999) 562-569
|
M.A. Gunther Sillero, F. Perez-Zuniga, J. Gomes, et al., Synthesis of FUDP-N-acetylglucosamine and FUDP-glucose in Saccharomyces cerevisiae cells treated with 5-fluorouracil, FEMS Yeast Res. 8 (2008) 257-265
|
R. Kanamaru, H. Kakuta, T. Sato, et al., The inhibitory effects of 5-fluorouracil on the metabolism of preribosomal and ribosomal RNA in L-1210 cells in vitro, Cancer Chemother. Pharmacol. 17 (1986) 43-46
|
D.C. Eichler, N. Craig, Processing of eukaryotic ribosomal RNA, Prog. Nucleic Acid Res. Mol. Biol. 49 (1994) 197-239
|
M. Charette, M.W. Gray, Pseudouridine in RNA: what, where, how, and why, IUBMB Life. 49 (2000) 341-351
|
M. Hengesbach, F. Voigts-Hoffmann, B. Hofmann, et al., Formation of a stalled early intermediate of pseudouridine synthesis monitored by real-time FRET, RNA. 16 (2010) 610-620
|
M. Li, Z.-G. Cui, S.A. Zakki, et al., Aluminum chloride causes 5-fluorouracil resistance in hepatocellular carcinoma HepG2 cells, J. Cell. Physiol. 234 (2019) 20249-20265
|
M.G. Francipane, D. Bulanin, E. Lagasse, Establishment and Characterization of 5-Fluorouracil-Resistant Human Colorectal Cancer Stem-Like Cells: Tumor Dynamics under Selection Pressure, Int J Mol Sci. 20 (2019) pii:E1817
|
A. Sakatani, F. Sonohara, A. Goel, Melatonin-mediated downregulation of thymidylate synthase as a novel mechanism for overcoming 5-fluorouracil associated chemoresistance in colorectal cancer cells, Carcinogenesis. 40 (2019) 422-431
|
T.C. Humphrey, Identifying new targets for cancer drug 5’-fluorouracil, Cell Cycle. 14 (2015) 1353
|
M. Jung, G. Berger, U. Pohlen, et al., Simultaneous determination of 5-fluorouracil and its active metabolites in serum and tissue by high-performance liquid chromatography, J. Chromatogr. B Biomed. Sci. Appl. 702 (1997) 193-202
|
J.M. Joulia, F. Pinguet, P.Y. Grosse, et al., Determination of 5-fluorouracil and its main metabolites in plasma by high-performance liquid chromatography: application to a pharmacokinetic study, J. Chromatogr. B Biomed. Sci. Appl. 692 (1997) 427-435
|
R.S. Jansen, H. Rosing, J.H.M. Schellens, et al., Retention studies of 2’-2’-difluorodeoxycytidine and 2’-2’-difluorodeoxyuridine nucleosides and nucleotides on porous graphitic carbon: development of a liquid chromatography-tandem mass spectrometry method, J Chromatogr A. 1216 (2009) 3168-3174
|
R.S. Jansen, H. Rosing, J.H.M. Schellens, et al., Simultaneous quantification of 2’,2’-difluorodeoxycytidine and 2’,2’-difluorodeoxyuridine nucleosides and nucleotides in white blood cells using porous graphitic carbon chromatography coupled with tandem mass spectrometry, Rapid Commun. Mass Spectrom. 23 (2009) 3040-3050
|
J. Byun, J.P. Henderson, J.W. Heinecke, Identification and quantification of mutagenic halogenated cytosines by gas chromatography, fast atom bombardment, and electrospray ionization tandem mass spectrometry, Anal. Biochem. 317 (2003) 201-209
|
C.-H. Hsu, J.-Y. Liou, G.E. Dutschman, et al., Phosphorylation of Cytidine, Deoxycytidine, and Their Analog Monophosphates by Human UMP/CMP Kinase Is Differentially Regulated by ATP and Magnesium, Mol. Pharmacol. 67 (2005) 806-814
|