Volume 11 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
Fang-Yuan Wang, Ping Wang, Dong-Fang Zhao, Frank J. Gonzalez, Yu-Fan Fan, Yang-Liu Xia, Guang-Bo Ge, Ling Yang. Analytical methodologies for sensing catechol-O-methyltransferase activity and their applications[J]. Journal of Pharmaceutical Analysis, 2021, 11(1): 15-27. doi: 10.1016/j.jpha.2020.03.012
Citation: Fang-Yuan Wang, Ping Wang, Dong-Fang Zhao, Frank J. Gonzalez, Yu-Fan Fan, Yang-Liu Xia, Guang-Bo Ge, Ling Yang. Analytical methodologies for sensing catechol-O-methyltransferase activity and their applications[J]. Journal of Pharmaceutical Analysis, 2021, 11(1): 15-27. doi: 10.1016/j.jpha.2020.03.012

Analytical methodologies for sensing catechol-O-methyltransferase activity and their applications

doi: 10.1016/j.jpha.2020.03.012
Funds:

This work was supported by the National Key Research and Development Program of China (2017YFC1700200, 2017YFC1702000), the National Natural Science Foundation of China (81922070, 81703604, 81973286, 81773687 and 81603187), Natural Science Foundation of Shanghai (18ZR1436500), Program of Shanghai Academic/Technology Research Leader (18XD1403600) and Shuguang Program (18SG40) supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission, the project sponsored by the development fund for Shanghai talents (2019), and the Key Science and Technology Program of Shenyang supported by Shenyang Science and Technology Bureau (17-230-9-05).

  • Received Date: Nov. 22, 2019
  • Accepted Date: Mar. 30, 2020
  • Rev Recd Date: Mar. 21, 2020
  • Available Online: Jan. 24, 2022
  • Publish Date: Feb. 15, 2021
  • Mammalian catechol-O-methyltransferases (COMT) are an important class of conjugative enzymes, which play a key role in the metabolism and inactivation of catechol neurotransmitters, catechol estrogens and a wide range of endobiotics and xenobiotics that bear the catechol group. Currently, COMT inhibitors are used in combination with levodopa for the treatment of Parkinson’s disease in clinical practice. The crucial role of COMT in human health has raised great interest in the development of more practical assays for highly selective and sensitive detection of COMT activity in real samples, as well as for rapid screening and characterization of COMT inhibitors as drug candidates. This review summarizes recent advances in analytical methodologies for sensing COMT activity and their applications. Several lists of biochemical assays for measuring COMT activity, including the probe substrates, along with their analytical conditions and kinetic parameters, are presented. Finally, the challenges and future perspectives in the field, such as visualization of COMT activity in vivo and in situ, are highlighted. Collectively, this review article overviews the practical assays for measuring COMT activities in complex biological samples, which will strongly facilitate the investigations on the relevance of COMT to human diseases and promote the discovery of COMT inhibitors via high-throughput screening.
  • loading
  • H.C. Guldberg and C.A. Marsden, Catechol-O-Methyl Transferase: Pharmacological Aspects and Physiological Role, Pharmacol. Rev. 27 (1975) 135-206. http://pharmrev.aspetjournals.org/content/27/2/135.long
    H.W. Bao, J.Y. Shim, J. Yu, et al., Biochemical and Molecular Modeling Studies of the O-Methylation of Various Endogenous and Exogenous Catechol Substrates Catalyzed by Recombinant Human Soluble and Membrane-Bound Catechol-O-Methyltransferases, Chem. Res. Toxicol. 20 (2007) 1409-1425. https://pubs.acs.org/doi/abs/10.1021/tx700174w
    I. Reenila, Catechol-O-methyltransferase activity-assay, distribution and pharmacological modification, Helsingin Yliopisto 15 (1999) 203-211. https://helda.helsinki.fi/handle/10138/20154
    R.G. Robinson, S.M. Smith, S.E. Wolkenberg, et al., Characterization of non-nitrocatechol pan and isoform specific catechol-O-methyltransferase inhibitors and substrates, ACS Chem. Neurosci. 3 (2012) 129-140. https://www.ncbi.nlm.nih.gov/pubmed/22860182
    L. Timo, V. Jukka, T. Carola, et al., Kinetics of human soluble and membrane-bound catechol-O-methyltransferase: A revised mechanism and description of the thermolabile variant of the enzyme, Biochem. 34 (1995) 4202-4210. https://www.ncbi.nlm.nih.gov/pubmed/7703232
    J. Chen, J. Song, P. Yuan, et al., Orientation and cellular distribution of membrane-bound catechol-O-methyltransferase in cortical neurons: implications for drug development, J Biol. Chem. 286 (2011) 34752-34760. https://www.ncbi.nlm.nih.gov/pubmed/21846718
    T.T. Myohanen, N. Schendzielorz, and P.T. Mannisto, Distribution of catechol-O-methyltransferase (COMT) proteins and enzymatic activities in wild-type and soluble COMT deficient mice, J Neurochem. 113 (2010) 1632-1643. https://www.ncbi.nlm.nih.gov/pubmed/20374420
    T.T. Myohanen and P.T. Mannisto, Distribution and functions of catechol-O-methyltransferase proteins: Do recent findings change the picture? Int. Rev. Neurobiol. 95 (2010) 29-47. https://www.ncbi.nlm.nih.gov/pubmed/21095458
    E. Todd, S. Duddempudi, B.D. Greenberg, et al., Determination of differential activities of soluble and membrane-bound catechol-O-methyltransferase in tissues and erythrocytes, J Chromatogr. B 729 (1999) 347-353. https://doi.org/10.1016/S0378-4347(99)00125-5
    B. T. Zhu, and A. H. Conney, Functional role of estrogen metabolism in target cells: review and perspectives, Carcinogenesis 19 (1998) 1-27. https://doi.org/10.1093/carcin/19.1.1
    L.S. Carneiro, A. M. Fonseca, P. Serrao, et al., Impact of physical exercise on catechol-O-methyltransferase activity in depressive patients: A preliminary communication, J Affect Disord. 193 (2016) 117-122. https://www.ncbi.nlm.nih.gov/pubmed/26773917
    A.C. Syvanen, C. Tilgmann, and R. Juha, Genetic polymorphism of catechol-O-methyltransferase (COMT): correlation of genotype with individual variation of S-COMT activity and comparison of the allele frequencies in the normal population and Parkinsonian patients in Finland, Pharmacogenetics 7 (1997) 65-71. https://www.ncbi.nlm.nih.gov/pubmed/9110364
    M.B.v. Duursen, J.T. Sanderson, P.C.D. Jong, et al., Phytochemicals inhibit catechol-O-methyltransferase activity in cytosolic fractions from healthy human mammary tissues: implications for catechol estrogen-induced DNA damage, Toxicol. Sci. 81 (2004) 316-324. https://www.ncbi.nlm.nih.gov/pubmed/15254334
    H.M. Lachman, Does COMT val158met affect behavioral phenotypes: yes, no, maybe? Neuropsychopharmacology 33 (2008) 3027-3029. https://www.nature.com/articles/npp2008189
    K. Sak, The Val158Met polymorphism in COMT gene and cancer risk: role of endogenous and exogenous catechols, Drug Metab. Rev. 49 (2017) 56-83. https://www.ncbi.nlm.nih.gov/pubmed/27826992
    H.L. Liu and W.C. Wang, Protein engineering to improve the thermostability of glucoamylase from Aspergillus awamori based on molecular dynamics simulations, Protein Eng. 16 (2003) 19-25. https://www.ncbi.nlm.nih.gov/pubmed/12646689?dopt=Abstract
    M. Machius, N. Declerck, R. Huber, et al., Kinetic stabilization of bacillus licheniformis alpha-amylase through introduction of hydrophobic residues at the surface, J Biol. Chem. 278 (2003) 11546-11553. https://www.ncbi.nlm.nih.gov/pubmed/12540849
    J. Chen, B.K. Lipska, N. Halim, et al., Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain, Am. J. Hum. Genet. 75 (2004) 807-821. https://www.ncbi.nlm.nih.gov/pubmed/15457404
    C.H. Lin, K.R. Chaudhuri, J.Y. Fan, et al., Depression and Catechol-O-methyltransferase (COMT) genetic variants are associated with pain in Parkinson’s disease, Sci. Rep. 7 (2017) 6306. https://www.ncbi.nlm.nih.gov/pubmed/28740224
    P.T. Mannisto and S. Kaakkola, Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors, Pharmacol. Rev. 51 (1999) 593-628. http://pharmrev.aspetjournals.org/content/51/4/593.long
    K.C. Paul, R. Rausch, and M.M. Creek, Apoe, mapt, and comt and parkinson’s disease susceptibility and cognitive symptom progression, J Parkinsons. Dis. 6 (2016) 349-359. https://www.ncbi.nlm.nih.gov/pubmed/27061069
    E.M. Tunbridge, P.J. Harrison, and D.R. Weinberger, Catechol-O-methyltransferase, cognition, and psychosis: Val158Met and beyond, Biol. Psychiatry 60 (2006) 141-151. HYPERLINK "https://www.ncbi.nlm.nih.gov/pubmed/16476412" ∖o "https://www.ncbi.nlm.nih.gov/pubmed/16476412"https://www.ncbi.nlm.nih.gov/pubmed/16476412
    T. Taguchi, M. Ikuno, M. Hondo, et al., α-Synuclein BAC transgenic mice exhibited RBD-like behaviour and hyposmia: a prodromal Parkinson’s disease model, Brain 0 (2019) 1-17. https://www.ncbi.nlm.nih.gov/pubmed/31816026
    F. D. Sani, N. Shakibapour, S. Beigoli, et al., Changes in binding affinity between ofloxacin and calf thymus DNA in the presence of histone H1: Spectroscopic and molecular modeling investigations, J. Lumi. 203 (2018) 599-608. https://doi.org/10.1016/j.jlumin.2018.06.083
    J. Chamani, Energetic domains analysis of bovine a-lactalbumin upon interaction with copper and dodecyl trimethylammonium bromide, J. Mol. Struc. 979 (2010): 227-234. https://doi.org/10.1016/j.molstruc.2010.06.035
    P. T. Mannisto, I. Ulmanen, K. Lundstrom et al., Characteristics of catechol-O-methyltransferase (COMT) and properties of selective COMT inhibitors, Prog. Drug Res. 39 (1992):291-350. https://doi.org/10.1007/978-3-0348-7144-0_9
    S. Redensek, B.J. Bizjan, M. Trost, et al., Clinical-pharmacogenetic predictive models for time to occurrence of levodopa related motor complications in parkinson’s disease, Front Genet. 10 (2019) 461. https://www.ncbi.nlm.nih.gov/pubmed/31156712
    D.M. Longo, Y. Yang, P.B. Watkins, et al., Elucidating differences in the hepatotoxic potential of tolcapone and entacapone with DILIsym, a mechanistic model of drug-induced liver injury, CPT Pharm. Syst. Pharm. 5 (2016) 31-39. https://www.ncbi.nlm.nih.gov/pubmed/26844013
    R.N. McBurney, W.M. Hines, L.S. VonTungeln, et al., The liver toxicity biomarker study phase I: markers for the effects of tolcapone or entacapone, Toxicol. Pathol. 40 (2012) 951-964. https://www.ncbi.nlm.nih.gov/pubmed/22573522
    M. Fabbri, J.J. Ferreira, A. Lees, et al., Opicapone for the treatment of Parkinson’s disease: A review of a new licensed medicine, Mov. Disord. 33 (2018) 1528-1539. https://www.ncbi.nlm.nih.gov/pubmed/30264443
    R.W. Woodard, M.D. Tsai, H.G. Floss, et al., Stereochemical course of the transmethylation catalyzed by catechol-O-methyltransferase, J. Biol. Chem. 255 (1980) 9124-9127. http://www.jbc.org/content/255/19/9124.long
    Y. Zhou, Z. Liu, J. Zhang, et al., Prediction of ligand modulation patterns on membrane receptors via lysine reactivity profiling, Chem. Commun. 55 (2019) 4311-4314. https://www.ncbi.nlm.nih.gov/pubmed/30829347
    J.K. Coward, E.P. Slixz, and F.Y. Wu, Kinetic studies on catechol O-methyltransferase, Product inhibition and the nature of the catechol binding site, Biochem. 12 (1973) 2291-2297. https://pubs.acs.org/doi/abs/10.1021/bi00736a017
    E. Blaschke and G. Hertting, Enzymic methylation of l-ascorbic acid by catechol-O-methyltransferase, Biochem. Pharmacol. 20 (1971) 1363-1370. https://doi.org/10.1016/0006-2952(71)90263-2
    V. Jukka, S.L. Anders, and L. Svensson, Crystal structure of catechol-O-methyltransferase, Nature 368 (1994) 354-358. https://www.nature.com/articles/368354a0
    Z. Ma, H. Liu, and B. Wu, Structure-based drug design of catechol-O-methyltransferase inhibitors for CNS disorders, Br. J. Clin. Pharmacol. 77 (2014) 410-420. https://www.ncbi.nlm.nih.gov/pubmed/23713800
    Z. Sharif-Barfeh, S. Beigoli, S. Marouzi, et al., Multi-spectroscopic and HPLC studies of the interaction between estradiol and cyclophosphamide with human serum albumin: binary and ternary systems, J. Solution Chem. 46 (2017):488-504. https://doi.org/10.1007/s10953-017-0590-2
    C. Lerner, R. Jakob-Roetne, B. Buettelmann, et al., Design of potent and drug-like nonphenolic inhibitors for catechol-O-methyltransferase derived from a fragment screening approach targeting the S-adenosyl-l-methionine pocket, J. Med. Chem. 59 (2016) 10163-10175. HYPERLINK "https://www.ncbi.nlm.nih.gov/pubmed/27685665" ∖o "https://www.ncbi.nlm.nih.gov/pubmed/27685665"https://www.ncbi.nlm.nih.gov/pubmed/27685665
    P.N. Palma, M.J.B. Acio, A.I. Loureiro, et al., Molecular modeling and metabolic studies of the interaction of catechol-O-methyltransferase and a new nitrocatechol inhibitor, Drug Metab. Dispos. 31 (2003) 250-258. http://dmd.aspetjournals.org/content/31/3/250.long
    J. Axelrod and R.J.T. Tomchick, Enzymic O-methylation of epinephrine and other catechols, J. Biol. Chem. 233 (1958) 702-705. http://www.jbc.org/content/233/3/702.short
    C.R. Creveling, N. Dalgard, H. Shimizu, et al., Catechol O-methyltransferase. 3. M- and p-O-methylation of catecholamines and their metabolites, Mol. Pharmacol. 6 (1970) 691-696. HYPERLINK "http://molpharm.aspetjournals.org/content/6/6/691.long" ∖o "http://molpharm.aspetjournals.org/content/6/6/691.long"http://molpharm.aspetjournals.org/content/6/6/691.long
    N. Jatana, A. Apoorva, S. Malik, et al., Inhibitors of catechol-O-methyltransferase in the treatment of neurological disorders, Cent. Nerv. Syst. Agents Med. Chem. 13 (2013) 166-194. HYPERLINK "http://www.eurekaselect.com/119498/article" ∖o "http://www.eurekaselect.com/119498/article"http://www.eurekaselect.com/119498/article
    B.T. Zhu, Catechol-O-methyltransferase (COMT)-mediated methylation metabolism of endogenous bioactive catechols and modulation by endobiotics and xenobiotics: importance in pathophysiology and pathogenesis, Cur. Drug Metab. 3 (2002) 321-349. http://www.eurekaselect.com/64279/article
    B.T. Zhu, U.K. Patel, M.X. Cai, et al., Rapid conversion of tea catechins to monomethylated products by rat liver cytosolic catechol-O-methyltransferase, Xenobiotica 31 (2001) 879-890. HYPERLINK "https://www.ncbi.nlm.nih.gov/pubmed/11780762" ∖o "https://www.ncbi.nlm.nih.gov/pubmed/11780762"https://www.ncbi.nlm.nih.gov/pubmed/11780762
    R.T. Borchardt, D.R. Thakker, and V.D. Warner, Catechol-O-Methyltransferase. 8. Structure-Activity Relationships for Inhibition by 8-Hydroxyquinolines, J. Med. Chem. 19 (1976) 558-560. https://www.ncbi.nlm.nih.gov/pubmed/817025
    S.C. Liang, Y.L. Xia, J. Hou, et al., Methylation, Glucuronidation, and Sulfonation of Daphnetin in Human Hepatic Preparations In Vitro: Metabolic Profiling, Pathway Comparison, and Bioactivity Analysis, J. Pharm. Sci. 105 (2016) 808-816. https://www.ncbi.nlm.nih.gov/pubmed/26869431
    S. Koh, K. Urayama, and S. Kawai, Application of a metal capillary column in gas chromatographic determination of catechol-O-methyltransferase activity, J. Chromatogr. 549 (1991) 434-439. https://doi.org/10.1016/S0021-9673(00)91456-0
    D.R. Thakker, C. Boehlert, K.L. Kirk, et al., Regioselectivity of catechol-O-methyltransferase. The effect of pH on the site of O-methylation of fluorinated norepinephrines, J. Biol. Chem. 261 (1986) 178-184. http://www.jbc.org/content/261/1/178.short
    Y. Cao, Z.J. Chen, H.D. Jiang, et al., Computational studies of the regioselectivities of COMT-catalyzed meta-/para-O methylations of luteolin and quercetin, J. Phys. Chem. B 118(2014) 470-481. https://www.ncbi.nlm.nih.gov/pubmed/24354565
    Y.L. Xia, T.Y. Dou, Y. Liu, et al., In vitro evaluation of the effect of C-4 substitution on methylation of 7,8-dihydroxycoumarin: metabolic profile and catalytic kinetics, R. Soc. Open. Sci. 5 (2018) 171271. https://www.ncbi.nlm.nih.gov/pubmed/29410835
    P. Mokaberi, V. Reyhani, Z. Amiri-Tehranizadeh, et al., New insights into the binding behavior of lomefloxacin and human hemoglobin using biophysical techniques: binary and ternary approaches, New J. Chem. 43 (2019): 8132-8145. https://doi.org/10.1039/C9NJ01048C
    A.A. Abdel-Latif, Reaction of catecholamines with hydroxylamine and its application to the assay of catechol-O-methyltransferase, Anal. Biochem. 29 (1969) 468-475.https://doi.org/10.1016/0003-2697(69)90331-5
    W.F. Herblin, A simple colorimetric assay for catechol-O-methyltransferase, Anal. Biochem. 51 (1973) 19-22. https://doi.org/10.1016/0003-2697(73)90448-X
    B.T. Ronald, A rapid spectrophotometric assay for catechol-O-methyltransferase, Anal. Biochem. 58 (1974) 382-389. https://doi.org/10.1016/0003-2697(74)90206-1
    J.M. Pennings, G.M.J. Van Kempen, Assay of catechol O-methyltransferase by determination of the m- and p-O-methylated products using high-performance liquid chromatography, Anal. Biochem. 98 (1979) 452-454. https://doi.org/10.1016/0003-2697(79)90166-0
    E.B. Sharon and E.W. Tan, Synthesis and in Vitro Evaluation of Two Progressive Series of Bifunctional Polyhydroxybenzamide Catechol-O-methyltransferase Inhibitors, J. Med. Chem. 40 (1997) 2035-2039. https://pubs.acs.org/doi/abs/10.1021/jm9605187
    R.E. Shoup, G.C. Davis, and P.T. Kissinger, Determination of catechol-O-methyltransferase activity in various tissues by liquid chromatography, Anal. Chem. 52 (1980) 483-487. https://doi.org/10.1021/ac50053a024
    E. Nissinen and P. Mannisto, Determination of catechol-O-methyltransferase activity by high-performance liquid chromatography with electrochemical detection, Anal. Biochem. 137 (1984) 69-73. https://doi.org/10.1016/0003-2697(84)90348-8
    I. Reenil, P. Tuomainen, and P.T. Mannisto, Improved assay of reaction products to quantitate catechol-O-methyltransferase activity by high-performance liquid chromatography with electrochemical detection, J. Chromatogr. B 663 (1995) 137-142. https://doi.org/10.1016/0378-4347(94)00433-6
    G. Ziircher, M. Da Pradat, and J. Dingemanse, Assessment of catechol-O-methyltransferase activity and its inhibition in erythrocytes of animals and humans, Biomed. Chromatogr. 10 (1996) 32-36. https://doi.org/10.1002/(SICI)1099-0801(199601)10:13.0.CO;2-N
    M. Mayumi, M. Tsunoda, and K. Imai, High-performance liquid chromatography-fluorescent assay of catechol-O-methyltransferase activity in rat brain, Anal. Bioanal. Chem. 376 (2003) 1069-1073. https://www.ncbi.nlm.nih.gov/pubmed/12904944/
    M. Tsunoda, Analytical Methods for the Measurement of Catechol-O-Methyltransferase Activity in Animal Tissues, Curr. Biotechn. 4 (2015) 197-201. https://www.researchgate.net/publication/280873943
    K. Zaitsu, Y. Okada, H. Nohta, et al., Assay for catechol-O-methyltransferase by high-perforimance liquid chromatography with fluorescence detection, J. Chromatogr. 211 (1981) 129-134. https://www.ncbi.nlm.nih.gov/pubmed/16470514
    H. Nohta, S. Noma, and Y. Ohkura, Assay for catechol-O-methyltransferase in erythrocytes using a new fluorogenic substrate, 2-(3,4-dihydroxyphenyl)naphto[1,2-d]thiazole, J. Chromatogr. 308 (1984) 93-100. https://doi.org/10.1016/0378-4347(84)80199-1
    N.P.M. Smit, S. Pavel, A. Kammeyer, et al., Determination of catechol-O-methyltransferase activity in relation to melanin metabolism using high-performance liquid chromatography with fluorimetric detection, Anal. Biochem. 190 (1990) 286-291. https://doi.org/10.1016/0003-2697(90)90195-F
    E. Nissinen, Determination of catechol-O-methyltransferase activity in brain tissue by high-performance liquid chromatography with on-line radiochemical detection, Anal. Biochem. 144 (1985) 247-252. https://doi.org/10.1016/0003-2697(85)90112-5
    B.G. William, C.D. Edman, J.C. Porter, et al., An assay for human erythrocyte catechol-O-methyltransferase activity using a catechol estrogen as the substrate, J. Clinica. Chimica. Acta 94 (1979) 63-71. https://doi.org/10.1016/0009-8981(79)90186-4
    P.A. Gulliver and K.F. Tipton, Direct extraction radioassay for catechol-Q-methyl-transferase activity, J. Biochem. Pharmacol. 27 (1978) 773-775. https://www.ncbi.nlm.nih.gov/pubmed/656116
    M.E.K. Salyan, D.L. Pedicord, L. Bergeron, et al., A general liquid chromatography/mass spectroscopy-based assay for detection and quantitation of methyltransferase activity, Anal. Biochem. 349 (2006) 112-117. https://doi.org/10.1016/S0021-9673(00)87297-0
    K. Mitamura, M. Yatera, and K. Shimada, Studies on neurosteroids XII. Determination of enzymatically formed catechol estrogens and guaiacol estrogens by rat brains using liquid chromatography-mass spectrometry-mass spectrometry, J. Chromatogr. B 748 (2000) 89-96. HYPERLINK "http://linkinghub.elsevier.com/retrieve/pii/S0378434700002905" ∖o "http://linkinghub.elsevier.com/retrieve/pii/S0378434700002905"http://linkinghub.elsevier.com/retrieve/pii/S0378434700002905
    S. Dawling, N. Roodi, R.L. Mernaugh, et al., Catechol-O-methyltransferase (COMT)-mediated 651 metabolism of catechol estrogens: comparison of wild-type and variant COMT isoforms, Cancer Res. 61 (2001) 6716-6722. https://cancerres.aacrjournals.org/content/61/18/6716.long
    M. Li, L. Yang, Y. Bai, et al., Analytical methods in lipidomics and their applications, Anal. Chem. 86 (2014) 161-175. https://www.ncbi.nlm.nih.gov/pubmed/24215393
    H.H. Maurer, J. Bickeboeller-Friedrich, and T. Kraemer, Gas chromatographic-mass spectrometric procedures for determination of the catechol-O-methyltransferase (COMT) activity and for detection of unstable catecholic metabolites in human and rat liver preparations after COMT catalyzed in statu nascendi deriva, J. Chromatogr. B 739 (2000) 325-335. http://linkinghub.elsevier.com/retrieve/pii/S0378434700000256
    K. Shimada, K. Mitamura, M. Shiroyama, et al., Studies on neurosteroids: IX. Characterization of estrogens in rat brains using gas chromatography-tandem mass spectrometry, J. Chromatogr. A 847 (1999) 171-178. https://doi.org/10.1016/S0021-9673 (98)01083-8
    J. D. Yager, Catechol-O-methyltransferase: characteristics, polymorphisms and role in breast cancer, Drug Discov. Today Dis. Mech. 9 (2012): 41- 46. https://doi: 10.1016/j.ddmec.2012.10.002
    A.A. Zoerner, K. Heusser, F.M. Gutzki, et al., Unique pentafluorobenzylation and collision-induced dissociation for specific and accurate GC-MS/MS quantification of the catecholamine metabolite 3,4-dihydroxyphenylglycol (DHPG) in human urine, J. Chromatogr. B 879 (2011) 1444-1456. https://doi.org/10.1016/j.jchromb.2010.06.022
    Y. R. Wang, L. Feng, L. Xu, et al., A rapid-response fluorescent probe for the sensitive and selective detection of human albumin in plasma and cell culture supernatants, Chem. Commun. 52 (2016) 6064-6067. https://doi.org/10.1039/c6cc00119j
    M. Kurkela, A. Siiskonen, M. Finel, et al., Microplate screening assay to identify inhibitors of human catechol-O-methyltransferase, Anal. Biochem. 331 (2004) 198-200. HYPERLINK "https://www.ncbi.nlm.nih.gov/pubmed/15246016" ∖o "https://www.ncbi.nlm.nih.gov/pubmed/15246016"https://www.ncbi.nlm.nih.gov/pubmed/15246016
    Y. F. Zhao, Y. Ni, L. L. Wang, et al., Ligand-displacement-based two-photon fluorogenic probe for visualizing mercapto biomolecules in live cells, drosophila brains and zebrafish, Analyst 143 (2018) 3433-3441. https://doi.org/ 10.1039/C8AN00453F
    J. Ning, W. Wang, G. B. Ge, et al., Targeted enzyme activated two-photon fluorescent probes: a case study of CYP3A4 using a two-dimensional design strategy, Angew. Chem. Int. Ed. 8 (2019): 9959-9963. https://doi.org/10.1002/anie.201903683
    X. Lv, J. B. Zhang, J. Hou, et al., Chemical probes for human UDP-glucuronosyltransferases: a comprehensive review 2019. Biotech. J. 14 , e1800002. https://doi.org/ 10.1002/biot.201800002
    X Lv, YL Xia, M. Finel et al., Recent progress and challenges in screening and characterization of UGT1A1 inhibitors, Acta Pharm. Sin. B 2(2019) 258-278. https://doi.org/10.1016/j.apsb.2018.09.005
    Z. Tian, L. Ding, K. Li, et al., Rational design of a long-wavelength fluorescent probe for highly selective sensing of carboxylesterase 1 in living systems, Anal. Chem. 91 (2019) 5638−5645. https://doi.org/10.1021/acs.analchem.8b05417
    X.K. Qian, P. Wang, Y.L. Xia, et al., A highly selective fluorescent probe for sensing activities of catechol-O-methyltransferase in complex biological samples, Sens. Actuators B 231 (2016) 615-623. https://doi.org/10.1016/j.snb.2016.03.074
    P. Wang, Y.L. Xia, L.W. Zhou, et al., An optimized two-photon fluorescent probe for biological sensing and imaging of catechol-O-methyltransferase, Chem. Eur. J. 23 (2017) 10800 -10807. https://onlinelibrary.wiley.com/doi/abs/10.1002/chem.201701384
    F. Karege, P. Bovier, J.M. Gaillard, et al., The decrease of erythrocyte catechol-O-methyltransferase activity in depressed patients and its diagnostic significance, Acta Psychiat. Scand. 76 (1987) 303-308. https://doi.org/10.1111/j.1600-0447.1987.tb02899.x
    E.S. Gershon and W.Z. Jonas, Erythrocyte Soluble catechol-O-methyl transferase activity in primary affective disorder, Arch. Gen. Psychiat. 32 (1975) 1351-1356. https://www.onacademic.com/detail/journal_1000040117701510_aafb.html
    N.J. Bray, P.R. Buckland, N.M. Williams, et al., A haplotype implicated in schizophrenia susceptibility is associated with reduced COMT expression in human brain, Am. J. Hum. Genet. 73 (2003) 152-161. https://doi.org/10.1086/376578
    S. Shifman, M. Bronstein, M. Sternfeld, et al., A highly significant association between a COMT haplotype and schizophrenia, Am. J. Hum. Genet. 71 (2002) 1296-1302. https://doi.org/10.1086/344514
    D. Mier, P. Kirsch, and A. Meyer-Lindenberg, Neural substrates of pleiotropic action of genetic variation in COMT: a meta-analysis, Mol. Psychiatr. 15 (2010) 1-10. https://www.nature.com/articles/mp200936
    D. Tsao, J.S. Wieskopf, N. Rashid, et al., Serotonin-induced hypersensitivity via inhibition of catechol-O-methyltransferase activity, Mol. Pain 8 (2012) 25-32. https://molecularpain.biomedcentral.com/articles/10.1186/1744-8069-8-25
    L. Lehmann, L. Jiang, and J. Wagner, Soy isoflavones decrease the catechol-O-methyltransferase-mediated inactivation of 4-hydroxyestradiol in cultured MCF-7 cells, Carcinogenesis 29 (2008) 363-370. https://www.ncbi.nlm.nih.gov/pubmed/18192686
    W. Wu, Q. Wu, X.F. Hong, et al., Catechol-O-methyltransferase (COMT), a new target for pancreatic cancer therapy, Cancer Sci. 106 (2015) 576-583. https://onlinelibrary.wiley.com/doi/full/10.1111/cas.12648
    I. Chang, J. Liu, S. Majid, et al., Catechol-O-methyltransferase-mediated metabolism of 4-hydroxyestradiol inhibits the growth of human renal cancer cells through the apoptotic pathway, Carcinogenesis 33 (2012) 420-426. https://www.ncbi.nlm.nih.gov/pubmed/22159223
    Y.L. Xia, H.L. Pang, T.Y. Dou, et al., Interspecies comparison in the COMT-mediated methylation of 3-BTD, RSC Adv. 8 (2018) 16278-16284. https://pubs.rsc.org/en/content/articlelanding/2018/RA/c8ra01938j#!divAbstract
    F.B. Rodrigues and J.J. Ferreira, Pharmacokinetic drug evaluation of opicapone for the treatment of Parkinson’s disease, Expert Opin. Drug Met. 14 (2018) 1-8. https://doi.org/10.1080/17425255.2018.1430138
    J.P. Lindenmayer, A. Khan, H. Lachman, et al., COMT genotype and response to cognitive remediation in schizophrenia, Schizophr. Res. 168 (2015) 279-284. https://doi.org/10.1016/j.schres.2015.07.037
    R.M. Corbo, G. Gambina, E. Broggio, et al., Association study of two steroid biosynthesis genes (COMT and CYP17) with Alzheimer’s disease in the Italian population, J. Neurol. Sci. 344 (2014) 149-153. https://doi.org/10.1016/j.jns.2014.06.045
    M. Fava, J.F. Rosenbaum, A.R. Kolsky, et al., Open study of the catechol-O-methyltransferase inhibitor tolcapone in major depressive disorder, J. Clin. Psychopharmacol. 19 (1999) 329-335. https://doi.org/10.1097/00004714-199908000-00008
    G.L. Zhang, I.P. Buchler, M. DePasquale, et al., Development of a PC12 cell-based assay for in vitro screening of catechol-O-methyltransferase inhibitors, ACS Chem. Neurosci. 10 (2019) 4221-4226. https://pubs.acs.org/doi/10.1021/acschemneuro.9b00395
    B. Masjost, P. Ballmer, E. Borroni, et al., Structure-based design, synthesis, and in vitro evaluation of bisubstrate inhibitors for catechol-O-methyltransferase (COMT), Chem. Eur. J. 6 (2015) 971-982. https://onlinelibrary.wiley.com/doi/abs/10.1002
    L.V. Kleist, S. Michaelis, K. Bartho, et al., Identification of potential off-target toxicity liabilities of catechol-O-methyltransferase inhibitors by differential competition capture compound mass spectrometry, J. Med. Chem. 59 (2016) 4664-4675. https://doi.org/10.1021/acs.jmedchem.5b01970
    G. B. Ge, Deciphering the metabolic fates of herbal constituents and the interactions of herbs with human metabolic system, Chinese J. Nat. Med. 17 (2019) 0801-0802. https://doi.org/10.1016/S1875-5364(19)30098-6
    Q. H. Zhou, Y. D. Zhu, F. Zhang, et al., Interactions of drug-metabolizing enzymes with the Chinese herb Psoraleae Fructus, Chinese J. Nat. Med. 17 (2019) 0858-0870. http://www.cnki.com.cn/Article/CJFDTotal-ZGTR201911007.htm
    S. C. Liang, G. B. Ge, Y. L. Xia, et al., Inhibition of human catechol-O-methyltransferase-mediated dopamine O-methylation by daphnetin and its Phase II metabolites, Xenobiotica 47 (2017) 498-504. https://www.ncbi.nlm.nih.gov/pubmed/27435571
    M. Nagai, A.H. Conney, and B.T. Zhu, et al., Strong inhibitory effects of common tea catechins and bioflavonoids on the O-methylation of catechol estrogens catalyzed by human liver cytosolic catechol-O-methyltransferase, Drug Metab. Dispos. 32 (2004) 497-504. https://doi.org/10.1124/dmd.32.5.497
    B.T. Zhu, P. Wang, M. Nagai, et al., Inhibition of human catechol-O-methyltransferase (COMT)-mediated O-methylation of catechol estrogens by major polyphenolic components present in coffee, J. Steroid Biochem. Mol. Biol. 113 (2009) 65-74. https://doi.org/10.1016/j.jsbmb.2008.11.011
    D. Yalcin and O. Bayraktar, Inhibition of catechol-O-methyltransferase (COMT) by some plant-derived alkaloids and phenolics, J. Mol. Catal. B-Enzym. 64 (2010) 162-166. https://doi.org/10.1016/j.molcatb.2009.04.014
    N. Jatana, A. Sharma, N. Latha., Pharmacophore modeling and virtual screening studies to design potential COMT inhibitors as new leads, J. Mol. Graph. Model. 39 (2013) 145-164. https://doi.org/10.1016/j.jmgm.2007.07.002
    Z. Z. Q. Guo, S. Park, J.Y. Yoon, et al., Recent progress in the development of near-infrared fluorescent probes for bioimaging applications, Chem. Soc. Rev. 43 (2014) 16-29. https://doi.org/10.1039/C3CS60271K
    G. G. S. Hong, A.L. Antaris, and H.J. Dai, Near-infrared fluorophores for biomedical imaging, Nat. Biomed. Eng. 1 (2017) 0010-0031. https://www.nature.com/articles/s41551-016-0010
    J. B. Li, H. W. Liu, T. Fu, et al., Recent progress in small-molecule Near-IR probes for bioimaging, Trends Chem. 1 (2019) 224-234. https://doi.org/10.1016/j.trechm.2019.03.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (117) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return