Citation: | Fang-Yuan Wang, Ping Wang, Dong-Fang Zhao, Frank J. Gonzalez, Yu-Fan Fan, Yang-Liu Xia, Guang-Bo Ge, Ling Yang. Analytical methodologies for sensing catechol-O-methyltransferase activity and their applications[J]. Journal of Pharmaceutical Analysis, 2021, 11(1): 15-27. doi: 10.1016/j.jpha.2020.03.012 |
H.C. Guldberg and C.A. Marsden, Catechol-O-Methyl Transferase: Pharmacological Aspects and Physiological Role, Pharmacol. Rev. 27 (1975) 135-206. http://pharmrev.aspetjournals.org/content/27/2/135.long
|
H.W. Bao, J.Y. Shim, J. Yu, et al., Biochemical and Molecular Modeling Studies of the O-Methylation of Various Endogenous and Exogenous Catechol Substrates Catalyzed by Recombinant Human Soluble and Membrane-Bound Catechol-O-Methyltransferases, Chem. Res. Toxicol. 20 (2007) 1409-1425. https://pubs.acs.org/doi/abs/10.1021/tx700174w
|
I. Reenila, Catechol-O-methyltransferase activity-assay, distribution and pharmacological modification, Helsingin Yliopisto 15 (1999) 203-211. https://helda.helsinki.fi/handle/10138/20154
|
R.G. Robinson, S.M. Smith, S.E. Wolkenberg, et al., Characterization of non-nitrocatechol pan and isoform specific catechol-O-methyltransferase inhibitors and substrates, ACS Chem. Neurosci. 3 (2012) 129-140. https://www.ncbi.nlm.nih.gov/pubmed/22860182
|
L. Timo, V. Jukka, T. Carola, et al., Kinetics of human soluble and membrane-bound catechol-O-methyltransferase: A revised mechanism and description of the thermolabile variant of the enzyme, Biochem. 34 (1995) 4202-4210. https://www.ncbi.nlm.nih.gov/pubmed/7703232
|
J. Chen, J. Song, P. Yuan, et al., Orientation and cellular distribution of membrane-bound catechol-O-methyltransferase in cortical neurons: implications for drug development, J Biol. Chem. 286 (2011) 34752-34760. https://www.ncbi.nlm.nih.gov/pubmed/21846718
|
T.T. Myohanen, N. Schendzielorz, and P.T. Mannisto, Distribution of catechol-O-methyltransferase (COMT) proteins and enzymatic activities in wild-type and soluble COMT deficient mice, J Neurochem. 113 (2010) 1632-1643. https://www.ncbi.nlm.nih.gov/pubmed/20374420
|
T.T. Myohanen and P.T. Mannisto, Distribution and functions of catechol-O-methyltransferase proteins: Do recent findings change the picture? Int. Rev. Neurobiol. 95 (2010) 29-47. https://www.ncbi.nlm.nih.gov/pubmed/21095458
|
E. Todd, S. Duddempudi, B.D. Greenberg, et al., Determination of differential activities of soluble and membrane-bound catechol-O-methyltransferase in tissues and erythrocytes, J Chromatogr. B 729 (1999) 347-353. https://doi.org/10.1016/S0378-4347(99)00125-5
|
B. T. Zhu, and A. H. Conney, Functional role of estrogen metabolism in target cells: review and perspectives, Carcinogenesis 19 (1998) 1-27. https://doi.org/10.1093/carcin/19.1.1
|
L.S. Carneiro, A. M. Fonseca, P. Serrao, et al., Impact of physical exercise on catechol-O-methyltransferase activity in depressive patients: A preliminary communication, J Affect Disord. 193 (2016) 117-122. https://www.ncbi.nlm.nih.gov/pubmed/26773917
|
A.C. Syvanen, C. Tilgmann, and R. Juha, Genetic polymorphism of catechol-O-methyltransferase (COMT): correlation of genotype with individual variation of S-COMT activity and comparison of the allele frequencies in the normal population and Parkinsonian patients in Finland, Pharmacogenetics 7 (1997) 65-71. https://www.ncbi.nlm.nih.gov/pubmed/9110364
|
M.B.v. Duursen, J.T. Sanderson, P.C.D. Jong, et al., Phytochemicals inhibit catechol-O-methyltransferase activity in cytosolic fractions from healthy human mammary tissues: implications for catechol estrogen-induced DNA damage, Toxicol. Sci. 81 (2004) 316-324. https://www.ncbi.nlm.nih.gov/pubmed/15254334
|
H.M. Lachman, Does COMT val158met affect behavioral phenotypes: yes, no, maybe? Neuropsychopharmacology 33 (2008) 3027-3029. https://www.nature.com/articles/npp2008189
|
K. Sak, The Val158Met polymorphism in COMT gene and cancer risk: role of endogenous and exogenous catechols, Drug Metab. Rev. 49 (2017) 56-83. https://www.ncbi.nlm.nih.gov/pubmed/27826992
|
H.L. Liu and W.C. Wang, Protein engineering to improve the thermostability of glucoamylase from Aspergillus awamori based on molecular dynamics simulations, Protein Eng. 16 (2003) 19-25. https://www.ncbi.nlm.nih.gov/pubmed/12646689?dopt=Abstract
|
M. Machius, N. Declerck, R. Huber, et al., Kinetic stabilization of bacillus licheniformis alpha-amylase through introduction of hydrophobic residues at the surface, J Biol. Chem. 278 (2003) 11546-11553. https://www.ncbi.nlm.nih.gov/pubmed/12540849
|
J. Chen, B.K. Lipska, N. Halim, et al., Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain, Am. J. Hum. Genet. 75 (2004) 807-821. https://www.ncbi.nlm.nih.gov/pubmed/15457404
|
C.H. Lin, K.R. Chaudhuri, J.Y. Fan, et al., Depression and Catechol-O-methyltransferase (COMT) genetic variants are associated with pain in Parkinson’s disease, Sci. Rep. 7 (2017) 6306. https://www.ncbi.nlm.nih.gov/pubmed/28740224
|
P.T. Mannisto and S. Kaakkola, Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors, Pharmacol. Rev. 51 (1999) 593-628. http://pharmrev.aspetjournals.org/content/51/4/593.long
|
K.C. Paul, R. Rausch, and M.M. Creek, Apoe, mapt, and comt and parkinson’s disease susceptibility and cognitive symptom progression, J Parkinsons. Dis. 6 (2016) 349-359. https://www.ncbi.nlm.nih.gov/pubmed/27061069
|
E.M. Tunbridge, P.J. Harrison, and D.R. Weinberger, Catechol-O-methyltransferase, cognition, and psychosis: Val158Met and beyond, Biol. Psychiatry 60 (2006) 141-151. HYPERLINK "https://www.ncbi.nlm.nih.gov/pubmed/16476412" ∖o "https://www.ncbi.nlm.nih.gov/pubmed/16476412"https://www.ncbi.nlm.nih.gov/pubmed/16476412
|
T. Taguchi, M. Ikuno, M. Hondo, et al., α-Synuclein BAC transgenic mice exhibited RBD-like behaviour and hyposmia: a prodromal Parkinson’s disease model, Brain 0 (2019) 1-17. https://www.ncbi.nlm.nih.gov/pubmed/31816026
|
F. D. Sani, N. Shakibapour, S. Beigoli, et al., Changes in binding affinity between ofloxacin and calf thymus DNA in the presence of histone H1: Spectroscopic and molecular modeling investigations, J. Lumi. 203 (2018) 599-608. https://doi.org/10.1016/j.jlumin.2018.06.083
|
J. Chamani, Energetic domains analysis of bovine a-lactalbumin upon interaction with copper and dodecyl trimethylammonium bromide, J. Mol. Struc. 979 (2010): 227-234. https://doi.org/10.1016/j.molstruc.2010.06.035
|
P. T. Mannisto, I. Ulmanen, K. Lundstrom et al., Characteristics of catechol-O-methyltransferase (COMT) and properties of selective COMT inhibitors, Prog. Drug Res. 39 (1992):291-350. https://doi.org/10.1007/978-3-0348-7144-0_9
|
S. Redensek, B.J. Bizjan, M. Trost, et al., Clinical-pharmacogenetic predictive models for time to occurrence of levodopa related motor complications in parkinson’s disease, Front Genet. 10 (2019) 461. https://www.ncbi.nlm.nih.gov/pubmed/31156712
|
D.M. Longo, Y. Yang, P.B. Watkins, et al., Elucidating differences in the hepatotoxic potential of tolcapone and entacapone with DILIsym, a mechanistic model of drug-induced liver injury, CPT Pharm. Syst. Pharm. 5 (2016) 31-39. https://www.ncbi.nlm.nih.gov/pubmed/26844013
|
R.N. McBurney, W.M. Hines, L.S. VonTungeln, et al., The liver toxicity biomarker study phase I: markers for the effects of tolcapone or entacapone, Toxicol. Pathol. 40 (2012) 951-964. https://www.ncbi.nlm.nih.gov/pubmed/22573522
|
M. Fabbri, J.J. Ferreira, A. Lees, et al., Opicapone for the treatment of Parkinson’s disease: A review of a new licensed medicine, Mov. Disord. 33 (2018) 1528-1539. https://www.ncbi.nlm.nih.gov/pubmed/30264443
|
R.W. Woodard, M.D. Tsai, H.G. Floss, et al., Stereochemical course of the transmethylation catalyzed by catechol-O-methyltransferase, J. Biol. Chem. 255 (1980) 9124-9127. http://www.jbc.org/content/255/19/9124.long
|
Y. Zhou, Z. Liu, J. Zhang, et al., Prediction of ligand modulation patterns on membrane receptors via lysine reactivity profiling, Chem. Commun. 55 (2019) 4311-4314. https://www.ncbi.nlm.nih.gov/pubmed/30829347
|
J.K. Coward, E.P. Slixz, and F.Y. Wu, Kinetic studies on catechol O-methyltransferase, Product inhibition and the nature of the catechol binding site, Biochem. 12 (1973) 2291-2297. https://pubs.acs.org/doi/abs/10.1021/bi00736a017
|
E. Blaschke and G. Hertting, Enzymic methylation of l-ascorbic acid by catechol-O-methyltransferase, Biochem. Pharmacol. 20 (1971) 1363-1370. https://doi.org/10.1016/0006-2952(71)90263-2
|
V. Jukka, S.L. Anders, and L. Svensson, Crystal structure of catechol-O-methyltransferase, Nature 368 (1994) 354-358. https://www.nature.com/articles/368354a0
|
Z. Ma, H. Liu, and B. Wu, Structure-based drug design of catechol-O-methyltransferase inhibitors for CNS disorders, Br. J. Clin. Pharmacol. 77 (2014) 410-420. https://www.ncbi.nlm.nih.gov/pubmed/23713800
|
Z. Sharif-Barfeh, S. Beigoli, S. Marouzi, et al., Multi-spectroscopic and HPLC studies of the interaction between estradiol and cyclophosphamide with human serum albumin: binary and ternary systems, J. Solution Chem. 46 (2017):488-504. https://doi.org/10.1007/s10953-017-0590-2
|
C. Lerner, R. Jakob-Roetne, B. Buettelmann, et al., Design of potent and drug-like nonphenolic inhibitors for catechol-O-methyltransferase derived from a fragment screening approach targeting the S-adenosyl-l-methionine pocket, J. Med. Chem. 59 (2016) 10163-10175. HYPERLINK "https://www.ncbi.nlm.nih.gov/pubmed/27685665" ∖o "https://www.ncbi.nlm.nih.gov/pubmed/27685665"https://www.ncbi.nlm.nih.gov/pubmed/27685665
|
P.N. Palma, M.J.B. Acio, A.I. Loureiro, et al., Molecular modeling and metabolic studies of the interaction of catechol-O-methyltransferase and a new nitrocatechol inhibitor, Drug Metab. Dispos. 31 (2003) 250-258. http://dmd.aspetjournals.org/content/31/3/250.long
|
J. Axelrod and R.J.T. Tomchick, Enzymic O-methylation of epinephrine and other catechols, J. Biol. Chem. 233 (1958) 702-705. http://www.jbc.org/content/233/3/702.short
|
C.R. Creveling, N. Dalgard, H. Shimizu, et al., Catechol O-methyltransferase. 3. M- and p-O-methylation of catecholamines and their metabolites, Mol. Pharmacol. 6 (1970) 691-696. HYPERLINK "http://molpharm.aspetjournals.org/content/6/6/691.long" ∖o "http://molpharm.aspetjournals.org/content/6/6/691.long"http://molpharm.aspetjournals.org/content/6/6/691.long
|
N. Jatana, A. Apoorva, S. Malik, et al., Inhibitors of catechol-O-methyltransferase in the treatment of neurological disorders, Cent. Nerv. Syst. Agents Med. Chem. 13 (2013) 166-194. HYPERLINK "http://www.eurekaselect.com/119498/article" ∖o "http://www.eurekaselect.com/119498/article"http://www.eurekaselect.com/119498/article
|
B.T. Zhu, Catechol-O-methyltransferase (COMT)-mediated methylation metabolism of endogenous bioactive catechols and modulation by endobiotics and xenobiotics: importance in pathophysiology and pathogenesis, Cur. Drug Metab. 3 (2002) 321-349. http://www.eurekaselect.com/64279/article
|
B.T. Zhu, U.K. Patel, M.X. Cai, et al., Rapid conversion of tea catechins to monomethylated products by rat liver cytosolic catechol-O-methyltransferase, Xenobiotica 31 (2001) 879-890. HYPERLINK "https://www.ncbi.nlm.nih.gov/pubmed/11780762" ∖o "https://www.ncbi.nlm.nih.gov/pubmed/11780762"https://www.ncbi.nlm.nih.gov/pubmed/11780762
|
R.T. Borchardt, D.R. Thakker, and V.D. Warner, Catechol-O-Methyltransferase. 8. Structure-Activity Relationships for Inhibition by 8-Hydroxyquinolines, J. Med. Chem. 19 (1976) 558-560. https://www.ncbi.nlm.nih.gov/pubmed/817025
|
S.C. Liang, Y.L. Xia, J. Hou, et al., Methylation, Glucuronidation, and Sulfonation of Daphnetin in Human Hepatic Preparations In Vitro: Metabolic Profiling, Pathway Comparison, and Bioactivity Analysis, J. Pharm. Sci. 105 (2016) 808-816. https://www.ncbi.nlm.nih.gov/pubmed/26869431
|
S. Koh, K. Urayama, and S. Kawai, Application of a metal capillary column in gas chromatographic determination of catechol-O-methyltransferase activity, J. Chromatogr. 549 (1991) 434-439. https://doi.org/10.1016/S0021-9673(00)91456-0
|
D.R. Thakker, C. Boehlert, K.L. Kirk, et al., Regioselectivity of catechol-O-methyltransferase. The effect of pH on the site of O-methylation of fluorinated norepinephrines, J. Biol. Chem. 261 (1986) 178-184. http://www.jbc.org/content/261/1/178.short
|
Y. Cao, Z.J. Chen, H.D. Jiang, et al., Computational studies of the regioselectivities of COMT-catalyzed meta-/para-O methylations of luteolin and quercetin, J. Phys. Chem. B 118(2014) 470-481. https://www.ncbi.nlm.nih.gov/pubmed/24354565
|
Y.L. Xia, T.Y. Dou, Y. Liu, et al., In vitro evaluation of the effect of C-4 substitution on methylation of 7,8-dihydroxycoumarin: metabolic profile and catalytic kinetics, R. Soc. Open. Sci. 5 (2018) 171271. https://www.ncbi.nlm.nih.gov/pubmed/29410835
|
P. Mokaberi, V. Reyhani, Z. Amiri-Tehranizadeh, et al., New insights into the binding behavior of lomefloxacin and human hemoglobin using biophysical techniques: binary and ternary approaches, New J. Chem. 43 (2019): 8132-8145. https://doi.org/10.1039/C9NJ01048C
|
A.A. Abdel-Latif, Reaction of catecholamines with hydroxylamine and its application to the assay of catechol-O-methyltransferase, Anal. Biochem. 29 (1969) 468-475.https://doi.org/10.1016/0003-2697(69)90331-5
|
W.F. Herblin, A simple colorimetric assay for catechol-O-methyltransferase, Anal. Biochem. 51 (1973) 19-22. https://doi.org/10.1016/0003-2697(73)90448-X
|
B.T. Ronald, A rapid spectrophotometric assay for catechol-O-methyltransferase, Anal. Biochem. 58 (1974) 382-389. https://doi.org/10.1016/0003-2697(74)90206-1
|
J.M. Pennings, G.M.J. Van Kempen, Assay of catechol O-methyltransferase by determination of the m- and p-O-methylated products using high-performance liquid chromatography, Anal. Biochem. 98 (1979) 452-454. https://doi.org/10.1016/0003-2697(79)90166-0
|
E.B. Sharon and E.W. Tan, Synthesis and in Vitro Evaluation of Two Progressive Series of Bifunctional Polyhydroxybenzamide Catechol-O-methyltransferase Inhibitors, J. Med. Chem. 40 (1997) 2035-2039. https://pubs.acs.org/doi/abs/10.1021/jm9605187
|
R.E. Shoup, G.C. Davis, and P.T. Kissinger, Determination of catechol-O-methyltransferase activity in various tissues by liquid chromatography, Anal. Chem. 52 (1980) 483-487. https://doi.org/10.1021/ac50053a024
|
E. Nissinen and P. Mannisto, Determination of catechol-O-methyltransferase activity by high-performance liquid chromatography with electrochemical detection, Anal. Biochem. 137 (1984) 69-73. https://doi.org/10.1016/0003-2697(84)90348-8
|
I. Reenil, P. Tuomainen, and P.T. Mannisto, Improved assay of reaction products to quantitate catechol-O-methyltransferase activity by high-performance liquid chromatography with electrochemical detection, J. Chromatogr. B 663 (1995) 137-142. https://doi.org/10.1016/0378-4347(94)00433-6
|
G. Ziircher, M. Da Pradat, and J. Dingemanse, Assessment of catechol-O-methyltransferase activity and its inhibition in erythrocytes of animals and humans, Biomed. Chromatogr. 10 (1996) 32-36. https://doi.org/10.1002/(SICI)1099-0801(199601)10:13.0.CO;2-N
|
M. Mayumi, M. Tsunoda, and K. Imai, High-performance liquid chromatography-fluorescent assay of catechol-O-methyltransferase activity in rat brain, Anal. Bioanal. Chem. 376 (2003) 1069-1073. https://www.ncbi.nlm.nih.gov/pubmed/12904944/
|
M. Tsunoda, Analytical Methods for the Measurement of Catechol-O-Methyltransferase Activity in Animal Tissues, Curr. Biotechn. 4 (2015) 197-201. https://www.researchgate.net/publication/280873943
|
K. Zaitsu, Y. Okada, H. Nohta, et al., Assay for catechol-O-methyltransferase by high-perforimance liquid chromatography with fluorescence detection, J. Chromatogr. 211 (1981) 129-134. https://www.ncbi.nlm.nih.gov/pubmed/16470514
|
H. Nohta, S. Noma, and Y. Ohkura, Assay for catechol-O-methyltransferase in erythrocytes using a new fluorogenic substrate, 2-(3,4-dihydroxyphenyl)naphto[1,2-d]thiazole, J. Chromatogr. 308 (1984) 93-100. https://doi.org/10.1016/0378-4347(84)80199-1
|
N.P.M. Smit, S. Pavel, A. Kammeyer, et al., Determination of catechol-O-methyltransferase activity in relation to melanin metabolism using high-performance liquid chromatography with fluorimetric detection, Anal. Biochem. 190 (1990) 286-291. https://doi.org/10.1016/0003-2697(90)90195-F
|
E. Nissinen, Determination of catechol-O-methyltransferase activity in brain tissue by high-performance liquid chromatography with on-line radiochemical detection, Anal. Biochem. 144 (1985) 247-252. https://doi.org/10.1016/0003-2697(85)90112-5
|
B.G. William, C.D. Edman, J.C. Porter, et al., An assay for human erythrocyte catechol-O-methyltransferase activity using a catechol estrogen as the substrate, J. Clinica. Chimica. Acta 94 (1979) 63-71. https://doi.org/10.1016/0009-8981(79)90186-4
|
P.A. Gulliver and K.F. Tipton, Direct extraction radioassay for catechol-Q-methyl-transferase activity, J. Biochem. Pharmacol. 27 (1978) 773-775. https://www.ncbi.nlm.nih.gov/pubmed/656116
|
M.E.K. Salyan, D.L. Pedicord, L. Bergeron, et al., A general liquid chromatography/mass spectroscopy-based assay for detection and quantitation of methyltransferase activity, Anal. Biochem. 349 (2006) 112-117. https://doi.org/10.1016/S0021-9673(00)87297-0
|
K. Mitamura, M. Yatera, and K. Shimada, Studies on neurosteroids XII. Determination of enzymatically formed catechol estrogens and guaiacol estrogens by rat brains using liquid chromatography-mass spectrometry-mass spectrometry, J. Chromatogr. B 748 (2000) 89-96. HYPERLINK "http://linkinghub.elsevier.com/retrieve/pii/S0378434700002905" ∖o "http://linkinghub.elsevier.com/retrieve/pii/S0378434700002905"http://linkinghub.elsevier.com/retrieve/pii/S0378434700002905
|
S. Dawling, N. Roodi, R.L. Mernaugh, et al., Catechol-O-methyltransferase (COMT)-mediated 651 metabolism of catechol estrogens: comparison of wild-type and variant COMT isoforms, Cancer Res. 61 (2001) 6716-6722. https://cancerres.aacrjournals.org/content/61/18/6716.long
|
M. Li, L. Yang, Y. Bai, et al., Analytical methods in lipidomics and their applications, Anal. Chem. 86 (2014) 161-175. https://www.ncbi.nlm.nih.gov/pubmed/24215393
|
H.H. Maurer, J. Bickeboeller-Friedrich, and T. Kraemer, Gas chromatographic-mass spectrometric procedures for determination of the catechol-O-methyltransferase (COMT) activity and for detection of unstable catecholic metabolites in human and rat liver preparations after COMT catalyzed in statu nascendi deriva, J. Chromatogr. B 739 (2000) 325-335. http://linkinghub.elsevier.com/retrieve/pii/S0378434700000256
|
K. Shimada, K. Mitamura, M. Shiroyama, et al., Studies on neurosteroids: IX. Characterization of estrogens in rat brains using gas chromatography-tandem mass spectrometry, J. Chromatogr. A 847 (1999) 171-178. https://doi.org/10.1016/S0021-9673 (98)01083-8
|
J. D. Yager, Catechol-O-methyltransferase: characteristics, polymorphisms and role in breast cancer, Drug Discov. Today Dis. Mech. 9 (2012): 41- 46. https://doi: 10.1016/j.ddmec.2012.10.002
|
A.A. Zoerner, K. Heusser, F.M. Gutzki, et al., Unique pentafluorobenzylation and collision-induced dissociation for specific and accurate GC-MS/MS quantification of the catecholamine metabolite 3,4-dihydroxyphenylglycol (DHPG) in human urine, J. Chromatogr. B 879 (2011) 1444-1456. https://doi.org/10.1016/j.jchromb.2010.06.022
|
Y. R. Wang, L. Feng, L. Xu, et al., A rapid-response fluorescent probe for the sensitive and selective detection of human albumin in plasma and cell culture supernatants, Chem. Commun. 52 (2016) 6064-6067. https://doi.org/10.1039/c6cc00119j
|
M. Kurkela, A. Siiskonen, M. Finel, et al., Microplate screening assay to identify inhibitors of human catechol-O-methyltransferase, Anal. Biochem. 331 (2004) 198-200. HYPERLINK "https://www.ncbi.nlm.nih.gov/pubmed/15246016" ∖o "https://www.ncbi.nlm.nih.gov/pubmed/15246016"https://www.ncbi.nlm.nih.gov/pubmed/15246016
|
Y. F. Zhao, Y. Ni, L. L. Wang, et al., Ligand-displacement-based two-photon fluorogenic probe for visualizing mercapto biomolecules in live cells, drosophila brains and zebrafish, Analyst 143 (2018) 3433-3441. https://doi.org/ 10.1039/C8AN00453F
|
J. Ning, W. Wang, G. B. Ge, et al., Targeted enzyme activated two-photon fluorescent probes: a case study of CYP3A4 using a two-dimensional design strategy, Angew. Chem. Int. Ed. 8 (2019): 9959-9963. https://doi.org/10.1002/anie.201903683
|
X. Lv, J. B. Zhang, J. Hou, et al., Chemical probes for human UDP-glucuronosyltransferases: a comprehensive review 2019. Biotech. J. 14 , e1800002. https://doi.org/ 10.1002/biot.201800002
|
X Lv, YL Xia, M. Finel et al., Recent progress and challenges in screening and characterization of UGT1A1 inhibitors, Acta Pharm. Sin. B 2(2019) 258-278. https://doi.org/10.1016/j.apsb.2018.09.005
|
Z. Tian, L. Ding, K. Li, et al., Rational design of a long-wavelength fluorescent probe for highly selective sensing of carboxylesterase 1 in living systems, Anal. Chem. 91 (2019) 5638−5645. https://doi.org/10.1021/acs.analchem.8b05417
|
X.K. Qian, P. Wang, Y.L. Xia, et al., A highly selective fluorescent probe for sensing activities of catechol-O-methyltransferase in complex biological samples, Sens. Actuators B 231 (2016) 615-623. https://doi.org/10.1016/j.snb.2016.03.074
|
P. Wang, Y.L. Xia, L.W. Zhou, et al., An optimized two-photon fluorescent probe for biological sensing and imaging of catechol-O-methyltransferase, Chem. Eur. J. 23 (2017) 10800 -10807. https://onlinelibrary.wiley.com/doi/abs/10.1002/chem.201701384
|
F. Karege, P. Bovier, J.M. Gaillard, et al., The decrease of erythrocyte catechol-O-methyltransferase activity in depressed patients and its diagnostic significance, Acta Psychiat. Scand. 76 (1987) 303-308. https://doi.org/10.1111/j.1600-0447.1987.tb02899.x
|
E.S. Gershon and W.Z. Jonas, Erythrocyte Soluble catechol-O-methyl transferase activity in primary affective disorder, Arch. Gen. Psychiat. 32 (1975) 1351-1356. https://www.onacademic.com/detail/journal_1000040117701510_aafb.html
|
N.J. Bray, P.R. Buckland, N.M. Williams, et al., A haplotype implicated in schizophrenia susceptibility is associated with reduced COMT expression in human brain, Am. J. Hum. Genet. 73 (2003) 152-161. https://doi.org/10.1086/376578
|
S. Shifman, M. Bronstein, M. Sternfeld, et al., A highly significant association between a COMT haplotype and schizophrenia, Am. J. Hum. Genet. 71 (2002) 1296-1302. https://doi.org/10.1086/344514
|
D. Mier, P. Kirsch, and A. Meyer-Lindenberg, Neural substrates of pleiotropic action of genetic variation in COMT: a meta-analysis, Mol. Psychiatr. 15 (2010) 1-10. https://www.nature.com/articles/mp200936
|
D. Tsao, J.S. Wieskopf, N. Rashid, et al., Serotonin-induced hypersensitivity via inhibition of catechol-O-methyltransferase activity, Mol. Pain 8 (2012) 25-32. https://molecularpain.biomedcentral.com/articles/10.1186/1744-8069-8-25
|
L. Lehmann, L. Jiang, and J. Wagner, Soy isoflavones decrease the catechol-O-methyltransferase-mediated inactivation of 4-hydroxyestradiol in cultured MCF-7 cells, Carcinogenesis 29 (2008) 363-370. https://www.ncbi.nlm.nih.gov/pubmed/18192686
|
W. Wu, Q. Wu, X.F. Hong, et al., Catechol-O-methyltransferase (COMT), a new target for pancreatic cancer therapy, Cancer Sci. 106 (2015) 576-583. https://onlinelibrary.wiley.com/doi/full/10.1111/cas.12648
|
I. Chang, J. Liu, S. Majid, et al., Catechol-O-methyltransferase-mediated metabolism of 4-hydroxyestradiol inhibits the growth of human renal cancer cells through the apoptotic pathway, Carcinogenesis 33 (2012) 420-426. https://www.ncbi.nlm.nih.gov/pubmed/22159223
|
Y.L. Xia, H.L. Pang, T.Y. Dou, et al., Interspecies comparison in the COMT-mediated methylation of 3-BTD, RSC Adv. 8 (2018) 16278-16284. https://pubs.rsc.org/en/content/articlelanding/2018/RA/c8ra01938j#!divAbstract
|
F.B. Rodrigues and J.J. Ferreira, Pharmacokinetic drug evaluation of opicapone for the treatment of Parkinson’s disease, Expert Opin. Drug Met. 14 (2018) 1-8. https://doi.org/10.1080/17425255.2018.1430138
|
J.P. Lindenmayer, A. Khan, H. Lachman, et al., COMT genotype and response to cognitive remediation in schizophrenia, Schizophr. Res. 168 (2015) 279-284. https://doi.org/10.1016/j.schres.2015.07.037
|
R.M. Corbo, G. Gambina, E. Broggio, et al., Association study of two steroid biosynthesis genes (COMT and CYP17) with Alzheimer’s disease in the Italian population, J. Neurol. Sci. 344 (2014) 149-153. https://doi.org/10.1016/j.jns.2014.06.045
|
M. Fava, J.F. Rosenbaum, A.R. Kolsky, et al., Open study of the catechol-O-methyltransferase inhibitor tolcapone in major depressive disorder, J. Clin. Psychopharmacol. 19 (1999) 329-335. https://doi.org/10.1097/00004714-199908000-00008
|
G.L. Zhang, I.P. Buchler, M. DePasquale, et al., Development of a PC12 cell-based assay for in vitro screening of catechol-O-methyltransferase inhibitors, ACS Chem. Neurosci. 10 (2019) 4221-4226. https://pubs.acs.org/doi/10.1021/acschemneuro.9b00395
|
B. Masjost, P. Ballmer, E. Borroni, et al., Structure-based design, synthesis, and in vitro evaluation of bisubstrate inhibitors for catechol-O-methyltransferase (COMT), Chem. Eur. J. 6 (2015) 971-982. https://onlinelibrary.wiley.com/doi/abs/10.1002
|
L.V. Kleist, S. Michaelis, K. Bartho, et al., Identification of potential off-target toxicity liabilities of catechol-O-methyltransferase inhibitors by differential competition capture compound mass spectrometry, J. Med. Chem. 59 (2016) 4664-4675. https://doi.org/10.1021/acs.jmedchem.5b01970
|
G. B. Ge, Deciphering the metabolic fates of herbal constituents and the interactions of herbs with human metabolic system, Chinese J. Nat. Med. 17 (2019) 0801-0802. https://doi.org/10.1016/S1875-5364(19)30098-6
|
Q. H. Zhou, Y. D. Zhu, F. Zhang, et al., Interactions of drug-metabolizing enzymes with the Chinese herb Psoraleae Fructus, Chinese J. Nat. Med. 17 (2019) 0858-0870. http://www.cnki.com.cn/Article/CJFDTotal-ZGTR201911007.htm
|
S. C. Liang, G. B. Ge, Y. L. Xia, et al., Inhibition of human catechol-O-methyltransferase-mediated dopamine O-methylation by daphnetin and its Phase II metabolites, Xenobiotica 47 (2017) 498-504. https://www.ncbi.nlm.nih.gov/pubmed/27435571
|
M. Nagai, A.H. Conney, and B.T. Zhu, et al., Strong inhibitory effects of common tea catechins and bioflavonoids on the O-methylation of catechol estrogens catalyzed by human liver cytosolic catechol-O-methyltransferase, Drug Metab. Dispos. 32 (2004) 497-504. https://doi.org/10.1124/dmd.32.5.497
|
B.T. Zhu, P. Wang, M. Nagai, et al., Inhibition of human catechol-O-methyltransferase (COMT)-mediated O-methylation of catechol estrogens by major polyphenolic components present in coffee, J. Steroid Biochem. Mol. Biol. 113 (2009) 65-74. https://doi.org/10.1016/j.jsbmb.2008.11.011
|
D. Yalcin and O. Bayraktar, Inhibition of catechol-O-methyltransferase (COMT) by some plant-derived alkaloids and phenolics, J. Mol. Catal. B-Enzym. 64 (2010) 162-166. https://doi.org/10.1016/j.molcatb.2009.04.014
|
N. Jatana, A. Sharma, N. Latha., Pharmacophore modeling and virtual screening studies to design potential COMT inhibitors as new leads, J. Mol. Graph. Model. 39 (2013) 145-164. https://doi.org/10.1016/j.jmgm.2007.07.002
|
Z. Z. Q. Guo, S. Park, J.Y. Yoon, et al., Recent progress in the development of near-infrared fluorescent probes for bioimaging applications, Chem. Soc. Rev. 43 (2014) 16-29. https://doi.org/10.1039/C3CS60271K
|
G. G. S. Hong, A.L. Antaris, and H.J. Dai, Near-infrared fluorophores for biomedical imaging, Nat. Biomed. Eng. 1 (2017) 0010-0031. https://www.nature.com/articles/s41551-016-0010
|
J. B. Li, H. W. Liu, T. Fu, et al., Recent progress in small-molecule Near-IR probes for bioimaging, Trends Chem. 1 (2019) 224-234. https://doi.org/10.1016/j.trechm.2019.03.002
|