Citation: | Carla Atallah, Catherine Charcosset, Hélène Greige-Gerges. Challenges for cysteamine stabilization, quantification, and biological effects improvement[J]. Journal of Pharmaceutical Analysis, 2020, 10(6): 499-516. doi: 10.1016/j.jpha.2020.03.007 |
Z.M. Bacq, G. Dechamps, P. Fischer, et al., Protection against x-rays and therapy of radiation sickness with beta-mercaptoethylamine, Science. 117 (1953) 633-636
|
P. Eker, A. Pihl, Studies on the growth-inhibiting and radioprotective effect of cystamine, cysteamine, and AET on mammalian cells in tissue culture, Radiat. Res. 21 (1964) 165-179. https://doi.org/10.2307/3571556
|
Y. Takagi, M. Shikita, T. Terasima, et al., Specificity of radioprotective and cytotoxic effects of cysteamine in HeLa S3 cells: generation of peroxide as the mechanism of paradoxical toxicity, Radiat. Res. 60 (1974) 292-301
|
Y.N. Korystov, F.B. Vexler, Mechanisms of the radioprotective effect of cysteamine in Escherichia coli, Radiat. Res. 114 (1988) 550-555
|
P. Mitznegg, M. Sabel, On the mechanism of radioprotection by cysteamine. I. Relationship between cysteamine-induced mitotic inhibition and radioprotective effects in the livers of young and senile white mice, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 24 (1973) 329-337
|
S. Cherqui, Cysteamine therapy: a treatment for cystinosis, not a cure, Kidney Int. 81 (2012) 127-129. https://doi.org/10.1038/ki.2011.301
|
W.A. Gahl, Early oral cysteamine therapy for nephropathic cystinosis, Eur. J. Pediatr. 162 (2003) S38-S41. https://doi.org/10.1007/s00431-003-1349-x
|
S. Farshi, P. Mansouri, B. Kasraee, Efficacy of cysteamine cream in the treatment of epidermal melasma, evaluating by Dermacatch as a new measurement method: a randomized double blind placebo controlled study, J. Dermatol. Treat. (2017) 1-8.https://doi.org/10.1080/09546634.2017.1351608
|
P. Mansouri, S. Farshi, Z. Hashemi, et al., Evaluation of the efficacy of cysteamine 5% cream in the treatment of epidermal melasma: a randomized double-blind placebo-controlled trial, Br. J. Dermatol. 173 (2015) 209-217. https://doi.org/10.1111/bjd.13424
|
D. McGregor, Hydroquinone: an evaluation of the human risks from its carcinogenic and mutagenic properties, Crit. Rev. Toxicol. 37 (2007) 887-914. https://doi.org/10.1080/10408440701638970
|
L. Qiu, M. Zhang, R.A. Sturm, et al., Inhibition of melanin synthesis by cystamine in human melanoma cells, J. Invest. Dermatol. 114 (2000) 21-27. https://doi.org/10.1046/j.1523-1747.2000.00826.x
|
M. Tatsuta, H. Iishi, H. Yamamura, et al., Inhibitory effect of prolonged administration of cysteamine on experimental carcinogenesis in rat stomach induced by N-methyl-N’-nitro-N-nitrosoguanidine, Int. J. Cancer. 41 (1988) 423-426
|
M. Lahiani-Skiba, Y. Boulet, I. Youm, et al., Interaction between hydrophilic drug and α-cyclodextrins: physico-chemical aspects, J. Incl. Phenom. Macrocycl. Chem. 57 (2007) 211-217. https://doi.org/10.1007/s10847-006-9194-y
|
P.A. Gresham, M. Barnett, S.V. Smith, et al., Use of a sustained-release multiple emulsion to extend the period of radio protection conferred by cysteamine, Nature. 234 (1971) 149-150
|
D. Jaskierowicz, F. Genissel, V. Roman, et al., Oral administration of liposome-entrapped Cysteamine and the distribution pattern in blood, liver and spleen, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 47 (1985) 615-619. https://doi.org/10.1080/09553008514550851
|
S. Pescina, F. Carra, C. Padula, et al., Effect of pH and penetration enhancers on cysteamine stability and trans-corneal transport, Eur. J. Pharm. Biopharm. 107 (2016) 171-179. https://doi.org/10.1016/j.ejpb.2016.07.009
|
J.D. Butler, F. Tietze, F. Pellefigue, et al., Depletion of cystine in cystinotic fibroblasts by drugs enclosed in liposomes, Pediatr. Res. 12 (1978) 46-51. https://doi.org/10.1203/00006450-197801000-00012
|
P. Dixon, K. Powell, A. Chauhan, Novel approaches for improving stability of cysteamine formulations, Int. J. Pharm. 549 (2018) 466-475. https://doi.org/10.1016/j.ijpharm.2018.08.006
|
M. Ijaz, B. Matuszczak, D. Rahmat, et al., Synthesis and characterization of thiolated β-cyclodextrin as a novel mucoadhesive excipient for intra-oral drug delivery, Carbohydr. Polym. 132 (2015) 187-195. https://doi.org/10.1016/j.carbpol.2015.06.073
|
M. Ijaz, M. Ahmad, N. Akhtar, et al., Thiolated α-Cyclodextrin: The Invisible Choice to Prolong Ocular Drug Residence Time, J. Pharm. Sci. 105 (2016) 2848-2854. https://doi.org/10.1016/j.xphs.2016.04.021
|
Y. Ma, L. Jiang, Y. Mei, et al., Colorimetric sensing strategy for mercury(ii) and melamine utilizing cysteamine-modified gold nanoparticles, The Analyst. 138 (2013) 5338-5343. https://doi.org/10.1039/c3an00690e
|
J. Zheng, H. Zhang, J. Qu, et al., Visual detection of glyphosate in environmental water samples using cysteamine-stabilized gold nanoparticles as colorimetric probe, Anal Methods. 5 (2013) 917-924. https://doi.org/10.1039/C2AY26391B
|
M. Besouw, R. Masereeuw, L. van den Heuvel, et al., Cysteamine: an old drug with new potential, Drug Discov. Today. 18 (2013) 785-792. https://doi.org/10.1016/j.drudis.2013.02.003
|
L. Gallego-Villar, L. Hannibal, J. Haberle, et al., Cysteamine revisited: repair of arginine to cysteine mutations, J. Inherit. Metab. Dis. 40 (2017) 555-567. https://doi.org/10.1007/s10545-017-0060-4
|
H. Ripps, W. Shen, Review: taurine: a “very essential” amino acid, Mol. Vis. 18 (2012) 2673-2686
|
M. Besouw, H. Blom, A. Tangerman, et al., The origin of halitosis in cystinotic patients due to cysteamine treatment, Mol. Genet. Metab. 91 (2007) 228-233.https://doi.org/10.1016/j.ymgme.2007.04.002
|
W.A. Gahl, J. Ingelfinger, P. Mohan, et al., Intravenous cysteamine therapy for nephropathic cystinosis, Pediatr. Res. 38 (1995) 579-584. https://doi.org/10.1203/00006450-199510000-00018
|
E.P. Serjeant, B. Dempsey, Ionisation constants of organic acids in aqueous solution, Pergamon Press, Oxford ; New York, 1979
|
M.J. O’Neil, The Merck index : an encyclopedia of chemicals, drugs, and biologicals, 13th ed, Whitehouse Station, N.J. : Merck, 2001. https://trove.nla.gov.au/version/13531769 (accessed January 23, 2020)
|
I. Gana, M. Barrio, C. Ghaddar, et al., An integrated view of the influence of temperature, pressure, and humidity on the stability of trimorphic cysteamine hydrochloride, Mol. Pharm. 12 (2015) 2276-2288. https://doi.org/10.1021/mp500830n
|
PubChem, Cysteamine, https://pubchem.ncbi.nlm.nih.gov/compound/6058 (accessed January 23, 2020)
|
L. Riauba, G. Niaura, O. Eicher-Lorka, et al., A study of cysteamine ionization in solution by raman spectroscopy and theoretical modeling, J. Phys. Chem. A. 110 (2006) 13394-13404. https://doi.org/10.1021/jp063816g
|
Q. Zhang, K. De Oliveira Vigier, S. Royer, et al., Deep eutectic solvents: syntheses, properties and applications, Chem. Soc. Rev. 41 (2012) 7108-7146.https://doi.org/10.1039/c2cs35178a
|
J.E. Biaglow, R.W. Issels, L.E. Gerweck, et al., Factors influencing the oxidation of cysteamine and other thiols: implications for hyperthermic sensitization and radiation protection, Radiat. Res. 100 (1984) 298-312
|
A. Brodrick, H.M. Broughton, R.M. Oakley, The stability of an oral liquid formulation of cysteamine, J. Clin. Pharm. Ther. 6 (1981) 67-70. https://doi.org/10.1111/j.1365-2710.1981.tb00889.x
|
R. Purkiss, Stability of cysteamine hydrochloride in solution, J. Clin. Pharm. Ther. 2 (1977) 199-203. https://doi.org/10.1111/j.1365-2710.1977.tb00090.x
|
E. Jellum, V.A. Bacon, W. Patton, et al., Quantitative determination of biologically important thiols and disulfides by gas-liquid chromatography, Anal. Biochem. 31 (1969) 339-347. https://doi.org/10.1016/0003-2697(69)90274-7
|
R.T. Lofberg, Gas chromatographic analysis of aminothiol radioprotective compounds, Anal. Lett. 4 (1971) 77-86. https://doi.org/10.1080/00032717108058594
|
R.C. Fahey, G.L. Newton, R. Dorian, et al., Analysis of biological thiols: quantitative determination of thiols at the picomole level based upon derivatization with monobromobimanes and separation by cation-exchange chromatography, Anal. Biochem. 111 (1981) 357-365
|
G.L. Newton, R. Dorian, R.C. Fahey, Analysis of biological thiols: derivatization with monobromobimane and separation by reverse-phase high-performance liquid chromatography, Anal. Biochem. 114 (1981) 383-387
|
A. Pastore, R. Massoud, C. Motti, et al., Fully automated assay for total homocysteine, cysteine, cysteinylglycine, glutathione, cysteamine, and 2-mercaptopropionylglycine in plasma and urine, Clin. Chem. 44 (1998) 825-832
|
M. Stachowicz, B. Lehmann, A. Tibi, et al., Determination of total cysteamine in human serum by a high-performance liquid chromatography with fluorescence detection, J. Pharm. Biomed. Anal. 17 (1998) 767-773. https://doi.org/10.1016/S0731-7085(97)00248-3
|
T. Toyo’oka, K. Imai, High-performance liquid chromatography and fluorometric detection of biologically important thiols, derivatized with ammonium 7-fluorobenzo-2-oxa-1,3-diazole-4-sulphonate (SBD-F), J. Chromatogr. 282 (1983) 495-500
|
S. Ichinose, M. Nakamura, M. Maeda, et al., A validated HPLC-fluorescence method with a semi-micro column for routine determination of homocysteine, cysteine and cysteamine, and the relation between the thiol derivatives in normal human plasma, Biomed. Chromatogr. 23 (2009) 935-939. https://doi.org/10.1002/bmc.1205
|
S. Ida, Y. Tanaka, S. Ohkuma, et al., Determination of cystamine by high-performance liquid chromatography, Anal. Biochem. 136 (1984) 352-356
|
H. Kataoka, Y. Imamura, H. Tanaka, et al., Determination of cysteamine and cystamine by gas chromatography with flame photometric detection, J. Pharm. Biomed. Anal. 11 (1993) 963-969
|
H. Kataoka, H. Tanaka, M. Makita, Determination of total cysteamine in urine and plasma samples by gas chromatography with flame photometric detection, J. Chromatogr. B Biomed. Appl. 657 (1994) 9-13
|
K. Kusmierek, R. Glowacki, E. Bald, Determination of total cysteamine in human plasma in the form of its 2-S-quinolinium derivative by high performance liquid chromatography, Anal. Bioanal. Chem. 382 (2005) 231-233. https://doi.org/10.1007/s00216-005-3166-8
|
J. Ogony, S. Mare, W. Wu, et al., High performance liquid chromatography analysis of 2-mercaptoethylamine (cysteamine) in biological samples by derivatization with N-(1-pyrenyl) maleimide (NPM) using fluorescence detection, J. Chromatogr. B. 843 (2006) 57-62. https://doi.org/10.1016/j.jchromb.2006.05.027
|
M. Masuda, C. Toriumi, T. Santa, et al., Fluorogenic derivatization reagents suitable for isolation and identification of cysteine-containing proteins utilizing high-performance liquid chromatography−tandem mass spectrometry, Anal. Chem. 76 (2004) 728-735. https://doi.org/10.1021/ac034840i
|
H. Asamoto, T. Ichibangase, H. Saimaru, et al., Existence of low-molecular-weight thiols in Caenorhabditis elegans demonstrated by HPLC-fluorescene detection utilizing 7-chloro-N-[2-(dimethylamino)ethyl]-2,1,3-benzoxadiazole-4-sulfonamide, Biomed. Chromatogr. 21 (2007) 999-1004. https://doi.org/10.1002/bmc.814
|
M. Bousquet, C. Gibrat, M. Ouellet, et al., Cystamine metabolism and brain transport properties: clinical implications for neurodegenerative diseases: Cystamine in neurodegenerative diseases, J. Neurochem. 114 (2010) 1651-1658. https://doi.org/10.1111/j.1471-4159.2010.06874.x
|
B.D. Soriano, L.-T.T. Tam, H.S. Lu, et al., A fluorescent-based HPLC assay for quantification of cysteine and cysteamine adducts in Escherichia coli-derived proteins, J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 880 (2012) 27-33. https://doi.org/10.1016/j.jchromb.2011.11.011
|
G. Ricci, M. Nardini, R. Chiaraluce, et al., Detection and determination of cysteamine at the nanomole level., J. Appl. Biochem. 5 (1983) 320-329
|
in: Methods Enzymology, Vol. 143, Academic Press
|
M. Hsiung, Y.Y. Yeo, K. Itiaba, et al., Cysteamine, penicillamine, glutathione, and their derivatives analyzed by automated ion exchange column chromatography, Biochem. Med. 19 (1978) 305-317. https://doi.org/10.1016/0006-2944(78)90032-7
|
J. Wang, L. Zhou, H. Lei, et al., Simultaneous quantification of amino metabolites in multiple metabolic pathways using ultra-high performance liquid chromatography with tandem-mass spectrometry, Sci. Rep. 7 (2017) 1423. https://doi.org/10.1038/s41598-017-01435-7
|
H.-M. Xiao, X. Wang, Q.-L. Liao, et al., Sensitive analysis of multiple low-molecular-weight thiols in a single human cervical cancer cell by chemical derivatization-liquid chromatography-mass spectrometry, The Analyst. 144 (2019) 6578-6585. https://doi.org/10.1039/C9AN01566C
|
G.L. Ellman, A colorimetric method for determining low concentrations of mercaptans, Arch. Biochem. Biophys. 74 (1958) 443-450
|
G.L. Ellman, Tissue sulfhydryl groups, Arch. Biochem. Biophys. 82 (1959) 70-77. https://doi.org/10.1016/0003-9861(59)90090-6
|
E.B. Belldina, M.Y. Huang, J.A. Schneider, et al., Steady-state pharmacokinetics and pharmacodynamics of cysteamine bitartrate in paediatric nephropathic cystinosis patients: Pharmacokinetics of cysteamine, Br. J. Clin. Pharmacol. 56 (2003) 520-525. https://doi.org/10.1046/j.1365-2125.2003.01927.x
|
A. Luaces-Rodriguez, V. Diaz-Tome, M. Gonzalez-Barcia, et al., Cysteamine polysaccharide hydrogels: Study of extended ocular delivery and biopermanence time by PET imaging, Int. J. Pharm. 528 (2017) 714-722. https://doi.org/10.1016/j.ijpharm.2017.06.060
|
B. Coulomb, F. Robert-Peillard, E. Palacio, et al., Fast microplate assay for simultaneous determination of thiols and dissolved sulfides in wastewater, Microchem. J. 132 (2017) 205-210. https://doi.org/10.1016/j.microc.2017.01.022
|
Y. Kim, D.H. Na, Simultaneous Determination of Cysteamine and Cystamine in Cosmetics by Ion-Pairing Reversed-Phase High-Performance Liquid Chromatography, Toxicol. Res. 35 (2019) 161-165. https://doi.org/10.5487/TR.2019.35.2.161
|
S. Li, ed., Molecularly imprinted sensors: overview and applications, 1st ed, Elsevier, Amsterdam; Boston, 2012
|
M.J. Kelly, D. Perrett, S.R. Rudge, The determination of cysteamine in physiological fluids by HPLC with electrochemical detection, Biomed. Chromatogr. BMC. 2 (1987) 216-220. https://doi.org/10.1002/bmc.1130020509
|
L.A. Smolin, J.A. Schneider, Measurement of total plasma cysteamine using high-performance liquid chromatography with electrochemical detection, Anal. Biochem. 168 (1988) 374-379. https://doi.org/10.1016/0003-2697(88)90332-6
|
R.A.G. Garcia, L.L. Hirschberger, M.H. Stipanuk, Measurement of cyst(e)amine in physiological samples by high performance liquid chromatography, Anal. Biochem. 170 (1988) 432-440. https://doi.org/10.1016/0003-2697(88)90655-0
|
J.B. Raoof, R. Ojani, F. Chekin, Fabrication of functionalized carbon nanotube modified glassy carbon electrode and its application for selective oxidation and voltammetric determination of cysteamine, J. Electroanal. Chem. 633 (2009) 187-192. https://doi.org/10.1016/j.jelechem.2009.05.011
|
R. Ojani, J.-B. Raoof, E. Zarei, Electrocatalytic oxidation and determination of Cysteamine by poly- N,N -dimethylaniline/ferrocyanide film modified carbon paste electrode, Electroanalysis. 21 (2009) 1189-1193. https://doi.org/10.1002/elan.200804530
|
H. Karimi-Maleh, P. Biparva, M. Hatami, A novel modified carbon paste electrode based on NiO/CNTs nanocomposite and (9, 10-dihydro-9, 10-ethanoanthracene-11, 12-dicarboximido)-4-ethylbenzene-1, 2-diol as a mediator for simultaneous determination of cysteamine, nicotinamide adenine dinucleotide and folic acid, Biosens. Bioelectron. 48 (2013) 270-275. https://doi.org/10.1016/j.bios.2013.04.029
|
H. Karimi-Maleh, M. Salimi-Amiri, F. Karimi, et al., A voltammetric sensor based on NiO nanoparticle-modified carbon-paste electrode for determination of cysteamine in the presence of high concentration of tryptophan, J. Chem. (2013). https://doi.org/10.1155/2013/946230
|
V. Arabali, H. Karimi-Maleh, Electrochemical determination of cysteamine in the presence of guanine and adenine using a carbon paste electrode modified with N-(4-hydroxyphenyl)-3,5-dinitrobenzamide and magnesium oxide nanoparticles, Anal. Methods. 8 (2016) 5604-5610. https://doi.org/10.1039/C6AY01591C
|
S. Salmanpour, M. Abbasghorbani, F. Karimi, et al., Electrocatalytic determination of cysteamine uses a nanostructure based electrochemical sensor in pharmaceutical samples, Curr. Anal. Chem. 13 (2016) 40-45. https://doi.org/10.2174/1573411012666160601143003
|
A. Taherkhani, H. Karimi-Maleh, A.A. Ensafi, et al., Simultaneous determination of cysteamine and folic acid in pharmaceutical and biological samples using modified multiwall carbon nanotube paste electrode, Chin. Chem. Lett. 23 (2012) 237-240. https://doi.org/10.1016/j.cclet.2011.10.023
|
M. Keyvanfard, S. Sami, H. Karimi-Maleh, et al., Electrocatalytic determination of cysteamine using multiwall carbon nanotube paste electrode in the presence of 3,4-dihydroxycinnamic acid as a homogeneous mediator, J. Braz. Chem. Soc. 24 (2013) 32-39. https://doi.org/10.1590/S0103-50532013000100006
|
M. Keyvanfard, M. Ahmadi, F. Karimi, et al., Voltammetric determination of cysteamine at multiwalled carbon nanotubes paste electrode in the presence of isoproterenol as a mediator, Chin. Chem. Lett. 25 (2014) 1244-1246. https://doi.org/10.1016/j.cclet.2014.05.018
|
B. Rezaei, H. Khosropour, A.A. Ensafi, Sensitive voltammetric determination of cysteamine using promazine hydrochloride as a mediator and modified multi-wall carbon nanotubes carbon paste electrodes, Ionics. 20 (2014) 1335-1342. https://doi.org/10.1007/s11581-013-1059-y
|
S.Z. Mohammadi, S. Tajik, H. Beitollahi, et al., Sensitive Cysteamine Determination Using Disposable Electrochemical Sensor Based on Modified Screen Printed Electrode, Biquarterly Iran. J. Anal. Chem. 6 (2019). https://doi.org/10.30473/ijac.2019.45800.1142
|
L.A. Smolin, K.F. Clark, J.G. Thoene, et al., A comparison of the effectiveness of cysteamine and phosphocysteamine in elevating plasma cysteamine concentration and decreasing leukocyte free cystine in nephropathic cystinosis, Pediatr. Res. 23 (1988) 616-620. https://doi.org/10.1203/00006450-198806000-00018
|
R. Dohil, M. Fidler, B.A. Barshop, et al., Understanding intestinal cysteamine bitartrate absorption, J. Pediatr. 148 (2006) 764-769. https://doi.org/10.1016/j.jpeds.2006.01.050
|
R. Dohil, B.L. Cabrera, J. Gangoiti, et al., The Effect of Food on Cysteamine Bitartrate Absorption in Healthy Participants, Clin. Pharmacol. Drug Dev. 1 (2012) 170-174. https://doi.org/10.1177/2160763X12454423
|
T. Khomenko, J. Kolodney, J.T. Pinto, et al., New mechanistic explanation for the localization of ulcers in the rat duodenum: role of iron and selective uptake of cysteamine, Arch. Biochem. Biophys. 525 (2012) 60-70. https://doi.org/10.1016/j.abb.2012.05.013
|
D. Armas, R.J. Holt, N.F. Confer, et al., A phase 1 pharmacokinetic study of cysteamine bitartrate delayed-release capsules following oral administration with orange juice, water, or omeprazole in cystinosis, Adv. Ther. 35 (2018) 199-209. https://doi.org/10.1007/s12325-018-0661-9
|
R.L. Pisoni, G.Y. Park, V.Q. Velilla, et al., Detection and characterization of a transport system mediating cysteamine entry into human fibroblast lysosomes. Specificity for aminoethylthiol and aminoethylsulfide derivatives, J. Biol. Chem. 270 (1995) 1179-1184
|
G. Medic, M. van der Weijden, A. Karabis, et al., A systematic literature review of cysteamine bitartrate in the treatment of nephropathic cystinosis, Curr. Med. Res. Opin. 33 (2017) 2065-2076. https://doi.org/10.1080/03007995.2017.1354288
|
G. Devereux, S. Steele, K. Griffiths, et al., An open-label investigation of the pharmacokinetics and tolerability of oral cysteamine in adults with cystic fibrosis, Clin. Drug Investig. 36 (2016) 605-612. https://doi.org/10.1007/s40261-016-0405-z
|
M.C. Fidler, B.A. Barshop, J.A. Gangoiti, et al., Pharmacokinetics of cysteamine bitartrate following gastrointestinal infusion, Br. J. Clin. Pharmacol. 63 (2007) 36-40. https://doi.org/10.1111/j.1365-2125.2006.02734.x
|
D.G. de Matos, C.C. Furnus, The importance of having high glutathione (GSH) level after bovine in vitro maturation on embryo development effect of beta-mercaptoethanol, cysteine and cystine, Theriogenology. 53 (2000) 761-771. https://doi.org/10.1016/S0093-691X(99)00278-2
|
P.D. Ray, B.-W. Huang, Y. Tsuji, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling, Cell. Signal. 24 (2012) 981-990. https://doi.org/10.1016/j.cellsig.2012.01.008
|
V.S. Chopra, L.E. Chalifour, H.M. Schipper, Differential effects of cysteamine on heat shock protein induction and cytoplasmic granulation in astrocytes and glioma cells, Mol. Brain Res. 31 (1995) 173-184. https://doi.org/10.1016/0169-328X(95)00049-X
|
T.M. Jeitner, D.A. Lawrence, Mechanisms for the cytotoxicity of cysteamine, Toxicol. Sci. Off. J. Soc. Toxicol. 63 (2001) 57-64
|
O.I. Aruoma, B. Halliwell, B.M. Hoey, et al., The antioxidant action of taurine, hypotaurine and their metabolic precursors, Biochem. J. 256 (1988) 251-255
|
J.W. Purdie, A comparative study of the radioprotective effects of cysteamine, WR-2721, and WR-1065 in cultured human cells, Radiat. Res. 77 (1979) 303-311
|
C.K. Nair, D.K. Parida, T. Nomura, Radioprotectors in radiotherapy, J. Radiat. Res. (Tokyo). 42 (2001) 21-37
|
M.A. Elmonem, K.R. Veys, N.A. Soliman, et al., Cystinosis: a review, Orphanet J. Rare Dis. 11 (2016) 47. https://doi.org/10.1186/s13023-016-0426-y
|
M.J. Wilmer, J.P. Schoeber, L.P. van den Heuvel, et al., Cystinosis: practical tools for diagnosis and treatment, Pediatr. Nephrol. Berl. Ger. 26 (2011) 205-215. https://doi.org/10.1007/s00467-010-1627-6
|
J.G. Thoene, R.G. Oshima, J.C. Crawhall, et al., Cystinosis. Intracellular cystine depletion by aminothiols in vitro and in vivo, J. Clin. Invest. 58 (1976) 180-189. https://doi.org/10.1172/JCI108448
|
S. Bozdag, K. Gumus, O. Gumus, et al., Formulation and in vitro evaluation of cysteamine hydrochloride viscous solutions for the treatment of corneal cystinosis, Eur. J. Pharm. Biopharm. 70 (2008) 260-269. https://doi.org/10.1016/j.ejpb.2008.04.010
|
M. Besouw, A. Tangerman, E. Cornelissen, et al., Halitosis in cystinosis patients after administration of immediate-release cysteamine bitartrate compared to delayed-release cysteamine bitartrate, Mol. Genet. Metab. 107 (2012) 234-236. https://doi.org/10.1016/j.ymgme.2012.06.017
|
H. Inano, M. Onoda, K. Suzuki, et al., Inhibitory effects of WR-2721 and cysteamine on tumor initiation in mammary glands of pregnant rats by radiation, Radiat. Res. 153 (2000) 68-74
|
X.-M. Wan, F. Zheng, L. Zhang, et al., Autophagy-mediated chemosensitization by cysteamine in cancer cells, Int. J. Cancer. 129 (2011) 1087-1095. https://doi.org/10.1002/ijc.25771
|
T. Fujisawa, B. Rubin, A. Suzuki, et al., Cysteamine Suppresses Invasion, Metastasis and Prolongs Survival by Inhibiting Matrix Metalloproteinases in a Mouse Model of Human Pancreatic Cancer, PLOS ONE. 7 (2012) e34437. https://doi.org/10.1371/journal.pone.0034437
|
A. Suzuki, R. Bhardwaj, P. Leland, et al., Cysteamine suppresses tumor metastasis by inhibiting activity of matrix metalloproteases without inducing toxicity in mouse models of human ovarian cancer, Cancer Res. 77 (2017) 4900-4900. https://doi.org/10.1158/1538-7445.AM2017-4900
|
J.J. Nordlund, R.E. Boissy, V.J. Hearing, et al., eds., The Pigmentary System: Physiology and Pathophysiology, 1 edition, Oxford University Press, New York, 1998
|
P.T. Rose, Pigmentary disorders, Med. Clin. North Am. 93 (2009) 1225-1239. https://doi.org/10.1016/j.mcna.2009.08.005
|
E. Bastonini, D. Kovacs, M. Picardo, Skin Pigmentation and Pigmentary Disorders: Focus on Epidermal/Dermal Cross-Talk, Ann. Dermatol. 28 (2016) 279-289.https://doi.org/10.5021/ad.2016.28.3.279
|
D. Rigopoulos, S. Gregoriou, A. Katsambas, Hyperpigmentation and melasma, J. Cosmet. Dermatol. 6 (2007) 195-202. https://doi.org/10.1111/j.1473-2165.2007.00321.x
|
E.C. Davis, V.D. Callender, Postinflammatory Hyperpigmentation, J. Clin. Aesthetic Dermatol. 3 (2010) 20-31
|
L. Nieuweboer-Krobotova, Hyperpigmentation: types, diagnostics and targeted treatment options: Hyperpigmentation, J. Eur. Acad. Dermatol. Venereol. 27 (2013) 2-4. https://doi.org/10.1111/jdv.12048
|
E. Ephrem, H. Elaissari, H. Greige-Gerges, Improvement of skin whitening agents efficiency through encapsulation: Current state of knowledge, Int. J. Pharm. 526 (2017) 50-68. https://doi.org/10.1016/j.ijpharm.2017.04.020
|
W. Chavin, W. Schlesinger, Some potent melanin depigmentary agents in the black goldfish, Naturwissenschaften. 53 (1966) 413-414
|
M.A. Pathak, E. Frenk, G. Szabo, et al., Cutaneous depigmentation, Clin. Res. 14 (1966)
|
E. Frenk, M.A. Pathak, G. Szabo, et al., Selective action of mercaptoethylamines on melanocytes in mammalian skin: experimental depigmentation, Arch. Dermatol. 97 (1968) 465-477
|
C. Niu, H.A. Aisa, Upregulation of Melanogenesis and Tyrosinase Activity: Potential Agents for Vitiligo, Molecules. 22 (2017) 1303. https://doi.org/10.3390/molecules22081303
|
C.D. Villarama, H.I. Maibach, Glutathione as a depigmenting agent: an overview, Int. J. Cosmet. Sci. 27 (2005) 147-153. https://doi.org/10.1111/j.1467-2494.2005.00235.x
|
B. Kasraee, Peroxidase-Mediated Mechanisms Are Involved in the Melanocytotoxic and Melanogenesis-Inhibiting Effects of Chemical Agents, Dermatology. 205 (2002) 329-339. https://doi.org/10.1159/000066439
|
E. Karg, G. Odh, A. Wittbjer, et al., Hydrogen peroxide as an inducer of elevated tyrosinase level in melanoma cells, J. Invest. Dermatol. 100 (1993) 209S-213S
|
R. Djurhuus, A.M. Svardal, P.M. Ueland, Cysteamine increases homocysteine export and glutathione content by independent mechanisms in C3H/10T1/2 cells., Mol. Pharmacol. 38 (1990) 327-332
|
M.J. Wilmer, L.A.J. Kluijtmans, T.J. van der Velden, et al., Cysteamine restores glutathione redox status in cultured cystinotic proximal tubular epithelial cells, Biochim. Biophys. Acta BBA - Mol. Basis Dis. 1812 (2011) 643-651. https://doi.org/10.1016/j.bbadis.2011.02.010
|
N.P. Smit, H. Van der Meulen, H.K. Koerten, et al., Melanogenesis in cultured melanocytes can be substantially influenced by L-tyrosine and L-cysteine, J. Invest. Dermatol. 109 (1997) 796-800. https://doi.org/10.1111/1523-1747.ep12340980
|
T. Meier, R.D. Issels, [11] Promotion of cyst(e)ine uptake, in: Methods Enzymol., Academic Press, 1995: pp. 103-112. https://doi.org/10.1016/0076-6879(95)52013-9
|
M.I. Rendon, J.I. Gaviria, Review of Skin-Lightening Agents, Dermatol. Surg. 31 (2005) 886-890. https://doi.org/10.1111/j.1524-4725.2005.31736
|
C. Hsu, H.A. Mahdi, M. Pourahmadi, et al., Cysteamine cream as a new skin depigmenting product, J. Am. Acad. Dermatol. 68 (2013). https://doi.org/10.1016/j.jaad.2012.12.781
|
A. Laouini, C. Jaafar-Maalej, I. Limayem-Blouza, et al., Preparation, Characterization and Applications of Liposomes: State of the Art, J. Colloid Sci. Biotechnol. 1 (2012) 147-168. https://doi.org/10.1166/jcsb.2012.1020
|
C. Zylberberg, S. Matosevic, Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape, Drug Deliv. 23 (2016) 3319-3329. https://doi.org/10.1080/10717544.2016.1177136
|
A. Akbarzadeh, R. Rezaei-Sadabady, S. Davaran, et al., Liposome: classification, preparation, and applications, Nanoscale Res. Lett. 8 (2013) 102. https://doi.org/10.1186/1556-276X-8-102
|
R. Gharib, H. Greige-Gerges, S. Fourmentin, et al., Liposomes incorporating cyclodextrin-drug inclusion complexes: Current state of knowledge, Carbohydr. Polym. 129 (2015) 175-186. https://doi.org/10.1016/j.carbpol.2015.04.048
|
V. Roman, F. Bocquier, F. Leterrier, et al., Radioprotective effect of cysteamine entrapped in liposomes orally administered to the mouse, Comptes Rendus Seances Acad. Sci. Ser. III Sci. Vie. 295 (1982) 191-193
|
T.M. Jeitner, J.R. Oliver, Possible oncostatic action of cysteamine on the pituitary glands of oestrogen-primed hyperprolactinaemic rats, J. Endocrinol. 127 (1990) 119-127.https://doi.org/10.1677/joe.0.1270119
|
R. Challa, A. Ahuja, J. Ali, et al., Cyclodextrins in drug delivery: An updated review, AAPS PharmSciTech. 6 (2005) E329-E357. https://doi.org/10.1208/pt060243
|
E.M.M. Del Valle, Cyclodextrins and their uses: a review, Process Biochem. 39 (2004) 1033-1046. https://doi.org/10.1016/S0032-9592(03)00258-9
|
S. Ramnik, B. Nitin, M. Jyotsana, et al., Characterization of cyclodextrin inclusion complexes - a review, J. Pharm. Sci. Technol. 2 (2010) 171-183
|
J. Bibette, F.L. Calderon, P. Poulin, Emulsions: basic principles, Rep. Prog. Phys. 62 (1999) 969-1033. https://doi.org/10.1088/0034-4885/62/6/203
|
J.N. Coupland, D.J. McClements, Lipid oxidation in food emulsions, Trends Food Sci. Technol. 7 (1996) 83-91. https://doi.org/10.1016/0924-2244(96)81302-1
|
H. Bridle, Chapter Nine - Nanotechnology for detection of waterborne pathogens, in: Waterborne Pathog., Academic Press, Amsterdam, 2014: pp. 291-318.https://doi.org/10.1016/B978-0-444-59543-0.00009-8
|
K. Alaqad, T.A. Saleh, Gold and silver nanoparticles: synthesis methods, characterization routes and applications towards drugs, J. Environ. Anal. Toxicol. 6 (2016). https://doi.org/10.4172/2161-0525.1000384
|
X. Liang, H. Wei, Z. Cui, et al., Colorimetric detection of melamine in complex matrices based on cysteamine-modified gold nanoparticles, The Analyst. 136 (2011) 179-183. https://doi.org/10.1039/C0AN00432D
|
R. Cao, B. Li, A simple and sensitive method for visual detection of heparin using positively-charged gold nanoparticles as colorimetric probes, Chem. Commun. 47 (2011) 2865-2867. https://doi.org/10.1039/c0cc05094f
|
J. Sun, J. Ge, W. Liu, et al., A facile assay for direct colorimetric visualization of lipopolysaccharides at low nanomolar level, Nano Res. 5 (2012) 486-493. https://doi.org/10.1007/s12274-012-0234-1
|
Y. Jiang, H. Zhao, N. Zhu, et al., A Simple Assay for Direct Colorimetric Visualization of Trinitrotoluene at Picomolar Levels Using Gold Nanoparticles, Angew. Chem. Int. Ed. 47 (2008) 8601-8604. https://doi.org/10.1002/anie.200804066
|
J. Kang, Y. Zhang, X. Li, et al., A Rapid Colorimetric Sensor of Clenbuterol Based on Cysteamine-Modified Gold Nanoparticles, ACS Appl. Mater. Interfaces. 8 (2016) 1-5. https://doi.org/10.1021/acsami.5b09079
|
D. Zhao, C. Chen, L. Lu, et al., A label-free colorimetric sensor for sulfate based on the inhibition of peroxidase-like activity of cysteamine-modified gold nanoparticles, Sens. Actuators B Chem. 215 (2015) 437-444. https://doi.org/10.1016/j.snb.2015.04.010
|