Volume 10 Issue 6
Dec.  2020
Turn off MathJax
Article Contents
Carla Atallah, Catherine Charcosset, Hélène Greige-Gerges. Challenges for cysteamine stabilization, quantification, and biological effects improvement[J]. Journal of Pharmaceutical Analysis, 2020, 10(6): 499-516. doi: 10.1016/j.jpha.2020.03.007
Citation: Carla Atallah, Catherine Charcosset, Hélène Greige-Gerges. Challenges for cysteamine stabilization, quantification, and biological effects improvement[J]. Journal of Pharmaceutical Analysis, 2020, 10(6): 499-516. doi: 10.1016/j.jpha.2020.03.007

Challenges for cysteamine stabilization, quantification, and biological effects improvement

doi: 10.1016/j.jpha.2020.03.007
Funds:

Authors thank the Research Funding Program at the Lebanese University and the “Agence Universitaire de la Francophonie, projet PCSI” for supporting the project (2018–2020).

  • Received Date: Oct. 22, 2019
  • Accepted Date: Mar. 18, 2020
  • Rev Recd Date: Mar. 16, 2020
  • Available Online: Jan. 24, 2022
  • Publish Date: Dec. 10, 2020
  • The aminothiol cysteamine, derived from coenzyme A degradation in mammalian cells, presents several biological applications. However, the bitter taste and sickening odor, chemical instability, hygroscopicity, and poor pharmacokinetic profile of cysteamine limit its efficacy. The use of encapsulation systems is a good methodology to overcome these undesirable properties and improve the pharmacokinetic behavior of cysteamine. Besides, the conjugation of cysteamine to the surface of nanoparticles is generally proposed to improve the intra-oral delivery of cyclodextrin-drug inclusion complexes, as well as to enhance the colorimetric detection of compounds by a gold nanoparticle aggregation method. On the other hand, the detection and quantification of cysteamine is a challenging mission due to the lack of a chromophore in its structure and its susceptibility to oxidation before or during the analysis. Derivatization agents are therefore applied for the quantification of this molecule. To our knowledge, the derivatization techniques and the encapsulation systems used for cysteamine delivery were not reviewed previously. Thus, this review aims to compile all the data on these methods as well as to provide an overview of the various biological applications of cysteamine focusing on its skin application.
  • loading
  • Z.M. Bacq, G. Dechamps, P. Fischer, et al., Protection against x-rays and therapy of radiation sickness with beta-mercaptoethylamine, Science. 117 (1953) 633-636
    P. Eker, A. Pihl, Studies on the growth-inhibiting and radioprotective effect of cystamine, cysteamine, and AET on mammalian cells in tissue culture, Radiat. Res. 21 (1964) 165-179. https://doi.org/10.2307/3571556
    Y. Takagi, M. Shikita, T. Terasima, et al., Specificity of radioprotective and cytotoxic effects of cysteamine in HeLa S3 cells: generation of peroxide as the mechanism of paradoxical toxicity, Radiat. Res. 60 (1974) 292-301
    Y.N. Korystov, F.B. Vexler, Mechanisms of the radioprotective effect of cysteamine in Escherichia coli, Radiat. Res. 114 (1988) 550-555
    P. Mitznegg, M. Sabel, On the mechanism of radioprotection by cysteamine. I. Relationship between cysteamine-induced mitotic inhibition and radioprotective effects in the livers of young and senile white mice, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 24 (1973) 329-337
    S. Cherqui, Cysteamine therapy: a treatment for cystinosis, not a cure, Kidney Int. 81 (2012) 127-129. https://doi.org/10.1038/ki.2011.301
    W.A. Gahl, Early oral cysteamine therapy for nephropathic cystinosis, Eur. J. Pediatr. 162 (2003) S38-S41. https://doi.org/10.1007/s00431-003-1349-x
    S. Farshi, P. Mansouri, B. Kasraee, Efficacy of cysteamine cream in the treatment of epidermal melasma, evaluating by Dermacatch as a new measurement method: a randomized double blind placebo controlled study, J. Dermatol. Treat. (2017) 1-8.https://doi.org/10.1080/09546634.2017.1351608
    P. Mansouri, S. Farshi, Z. Hashemi, et al., Evaluation of the efficacy of cysteamine 5% cream in the treatment of epidermal melasma: a randomized double-blind placebo-controlled trial, Br. J. Dermatol. 173 (2015) 209-217. https://doi.org/10.1111/bjd.13424
    D. McGregor, Hydroquinone: an evaluation of the human risks from its carcinogenic and mutagenic properties, Crit. Rev. Toxicol. 37 (2007) 887-914. https://doi.org/10.1080/10408440701638970
    L. Qiu, M. Zhang, R.A. Sturm, et al., Inhibition of melanin synthesis by cystamine in human melanoma cells, J. Invest. Dermatol. 114 (2000) 21-27. https://doi.org/10.1046/j.1523-1747.2000.00826.x
    M. Tatsuta, H. Iishi, H. Yamamura, et al., Inhibitory effect of prolonged administration of cysteamine on experimental carcinogenesis in rat stomach induced by N-methyl-N’-nitro-N-nitrosoguanidine, Int. J. Cancer. 41 (1988) 423-426
    M. Lahiani-Skiba, Y. Boulet, I. Youm, et al., Interaction between hydrophilic drug and α-cyclodextrins: physico-chemical aspects, J. Incl. Phenom. Macrocycl. Chem. 57 (2007) 211-217. https://doi.org/10.1007/s10847-006-9194-y
    P.A. Gresham, M. Barnett, S.V. Smith, et al., Use of a sustained-release multiple emulsion to extend the period of radio protection conferred by cysteamine, Nature. 234 (1971) 149-150
    D. Jaskierowicz, F. Genissel, V. Roman, et al., Oral administration of liposome-entrapped Cysteamine and the distribution pattern in blood, liver and spleen, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 47 (1985) 615-619. https://doi.org/10.1080/09553008514550851
    S. Pescina, F. Carra, C. Padula, et al., Effect of pH and penetration enhancers on cysteamine stability and trans-corneal transport, Eur. J. Pharm. Biopharm. 107 (2016) 171-179. https://doi.org/10.1016/j.ejpb.2016.07.009
    J.D. Butler, F. Tietze, F. Pellefigue, et al., Depletion of cystine in cystinotic fibroblasts by drugs enclosed in liposomes, Pediatr. Res. 12 (1978) 46-51. https://doi.org/10.1203/00006450-197801000-00012
    P. Dixon, K. Powell, A. Chauhan, Novel approaches for improving stability of cysteamine formulations, Int. J. Pharm. 549 (2018) 466-475. https://doi.org/10.1016/j.ijpharm.2018.08.006
    M. Ijaz, B. Matuszczak, D. Rahmat, et al., Synthesis and characterization of thiolated β-cyclodextrin as a novel mucoadhesive excipient for intra-oral drug delivery, Carbohydr. Polym. 132 (2015) 187-195. https://doi.org/10.1016/j.carbpol.2015.06.073
    M. Ijaz, M. Ahmad, N. Akhtar, et al., Thiolated α-Cyclodextrin: The Invisible Choice to Prolong Ocular Drug Residence Time, J. Pharm. Sci. 105 (2016) 2848-2854. https://doi.org/10.1016/j.xphs.2016.04.021
    Y. Ma, L. Jiang, Y. Mei, et al., Colorimetric sensing strategy for mercury(ii) and melamine utilizing cysteamine-modified gold nanoparticles, The Analyst. 138 (2013) 5338-5343. https://doi.org/10.1039/c3an00690e
    J. Zheng, H. Zhang, J. Qu, et al., Visual detection of glyphosate in environmental water samples using cysteamine-stabilized gold nanoparticles as colorimetric probe, Anal Methods. 5 (2013) 917-924. https://doi.org/10.1039/C2AY26391B
    M. Besouw, R. Masereeuw, L. van den Heuvel, et al., Cysteamine: an old drug with new potential, Drug Discov. Today. 18 (2013) 785-792. https://doi.org/10.1016/j.drudis.2013.02.003
    L. Gallego-Villar, L. Hannibal, J. Haberle, et al., Cysteamine revisited: repair of arginine to cysteine mutations, J. Inherit. Metab. Dis. 40 (2017) 555-567. https://doi.org/10.1007/s10545-017-0060-4
    H. Ripps, W. Shen, Review: taurine: a “very essential” amino acid, Mol. Vis. 18 (2012) 2673-2686
    M. Besouw, H. Blom, A. Tangerman, et al., The origin of halitosis in cystinotic patients due to cysteamine treatment, Mol. Genet. Metab. 91 (2007) 228-233.https://doi.org/10.1016/j.ymgme.2007.04.002
    W.A. Gahl, J. Ingelfinger, P. Mohan, et al., Intravenous cysteamine therapy for nephropathic cystinosis, Pediatr. Res. 38 (1995) 579-584. https://doi.org/10.1203/00006450-199510000-00018
    E.P. Serjeant, B. Dempsey, Ionisation constants of organic acids in aqueous solution, Pergamon Press, Oxford ; New York, 1979
    M.J. O’Neil, The Merck index : an encyclopedia of chemicals, drugs, and biologicals, 13th ed, Whitehouse Station, N.J. : Merck, 2001. https://trove.nla.gov.au/version/13531769 (accessed January 23, 2020)
    I. Gana, M. Barrio, C. Ghaddar, et al., An integrated view of the influence of temperature, pressure, and humidity on the stability of trimorphic cysteamine hydrochloride, Mol. Pharm. 12 (2015) 2276-2288. https://doi.org/10.1021/mp500830n
    PubChem, Cysteamine, https://pubchem.ncbi.nlm.nih.gov/compound/6058 (accessed January 23, 2020)
    L. Riauba, G. Niaura, O. Eicher-Lorka, et al., A study of cysteamine ionization in solution by raman spectroscopy and theoretical modeling, J. Phys. Chem. A. 110 (2006) 13394-13404. https://doi.org/10.1021/jp063816g
    Q. Zhang, K. De Oliveira Vigier, S. Royer, et al., Deep eutectic solvents: syntheses, properties and applications, Chem. Soc. Rev. 41 (2012) 7108-7146.https://doi.org/10.1039/c2cs35178a
    J.E. Biaglow, R.W. Issels, L.E. Gerweck, et al., Factors influencing the oxidation of cysteamine and other thiols: implications for hyperthermic sensitization and radiation protection, Radiat. Res. 100 (1984) 298-312
    A. Brodrick, H.M. Broughton, R.M. Oakley, The stability of an oral liquid formulation of cysteamine, J. Clin. Pharm. Ther. 6 (1981) 67-70. https://doi.org/10.1111/j.1365-2710.1981.tb00889.x
    R. Purkiss, Stability of cysteamine hydrochloride in solution, J. Clin. Pharm. Ther. 2 (1977) 199-203. https://doi.org/10.1111/j.1365-2710.1977.tb00090.x
    E. Jellum, V.A. Bacon, W. Patton, et al., Quantitative determination of biologically important thiols and disulfides by gas-liquid chromatography, Anal. Biochem. 31 (1969) 339-347. https://doi.org/10.1016/0003-2697(69)90274-7
    R.T. Lofberg, Gas chromatographic analysis of aminothiol radioprotective compounds, Anal. Lett. 4 (1971) 77-86. https://doi.org/10.1080/00032717108058594
    R.C. Fahey, G.L. Newton, R. Dorian, et al., Analysis of biological thiols: quantitative determination of thiols at the picomole level based upon derivatization with monobromobimanes and separation by cation-exchange chromatography, Anal. Biochem. 111 (1981) 357-365
    G.L. Newton, R. Dorian, R.C. Fahey, Analysis of biological thiols: derivatization with monobromobimane and separation by reverse-phase high-performance liquid chromatography, Anal. Biochem. 114 (1981) 383-387
    A. Pastore, R. Massoud, C. Motti, et al., Fully automated assay for total homocysteine, cysteine, cysteinylglycine, glutathione, cysteamine, and 2-mercaptopropionylglycine in plasma and urine, Clin. Chem. 44 (1998) 825-832
    M. Stachowicz, B. Lehmann, A. Tibi, et al., Determination of total cysteamine in human serum by a high-performance liquid chromatography with fluorescence detection, J. Pharm. Biomed. Anal. 17 (1998) 767-773. https://doi.org/10.1016/S0731-7085(97)00248-3
    T. Toyo’oka, K. Imai, High-performance liquid chromatography and fluorometric detection of biologically important thiols, derivatized with ammonium 7-fluorobenzo-2-oxa-1,3-diazole-4-sulphonate (SBD-F), J. Chromatogr. 282 (1983) 495-500
    S. Ichinose, M. Nakamura, M. Maeda, et al., A validated HPLC-fluorescence method with a semi-micro column for routine determination of homocysteine, cysteine and cysteamine, and the relation between the thiol derivatives in normal human plasma, Biomed. Chromatogr. 23 (2009) 935-939. https://doi.org/10.1002/bmc.1205
    S. Ida, Y. Tanaka, S. Ohkuma, et al., Determination of cystamine by high-performance liquid chromatography, Anal. Biochem. 136 (1984) 352-356
    H. Kataoka, Y. Imamura, H. Tanaka, et al., Determination of cysteamine and cystamine by gas chromatography with flame photometric detection, J. Pharm. Biomed. Anal. 11 (1993) 963-969
    H. Kataoka, H. Tanaka, M. Makita, Determination of total cysteamine in urine and plasma samples by gas chromatography with flame photometric detection, J. Chromatogr. B Biomed. Appl. 657 (1994) 9-13
    K. Kusmierek, R. Glowacki, E. Bald, Determination of total cysteamine in human plasma in the form of its 2-S-quinolinium derivative by high performance liquid chromatography, Anal. Bioanal. Chem. 382 (2005) 231-233. https://doi.org/10.1007/s00216-005-3166-8
    J. Ogony, S. Mare, W. Wu, et al., High performance liquid chromatography analysis of 2-mercaptoethylamine (cysteamine) in biological samples by derivatization with N-(1-pyrenyl) maleimide (NPM) using fluorescence detection, J. Chromatogr. B. 843 (2006) 57-62. https://doi.org/10.1016/j.jchromb.2006.05.027
    M. Masuda, C. Toriumi, T. Santa, et al., Fluorogenic derivatization reagents suitable for isolation and identification of cysteine-containing proteins utilizing high-performance liquid chromatography−tandem mass spectrometry, Anal. Chem. 76 (2004) 728-735. https://doi.org/10.1021/ac034840i
    H. Asamoto, T. Ichibangase, H. Saimaru, et al., Existence of low-molecular-weight thiols in Caenorhabditis elegans demonstrated by HPLC-fluorescene detection utilizing 7-chloro-N-[2-(dimethylamino)ethyl]-2,1,3-benzoxadiazole-4-sulfonamide, Biomed. Chromatogr. 21 (2007) 999-1004. https://doi.org/10.1002/bmc.814
    M. Bousquet, C. Gibrat, M. Ouellet, et al., Cystamine metabolism and brain transport properties: clinical implications for neurodegenerative diseases: Cystamine in neurodegenerative diseases, J. Neurochem. 114 (2010) 1651-1658. https://doi.org/10.1111/j.1471-4159.2010.06874.x
    B.D. Soriano, L.-T.T. Tam, H.S. Lu, et al., A fluorescent-based HPLC assay for quantification of cysteine and cysteamine adducts in Escherichia coli-derived proteins, J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 880 (2012) 27-33. https://doi.org/10.1016/j.jchromb.2011.11.011
    G. Ricci, M. Nardini, R. Chiaraluce, et al., Detection and determination of cysteamine at the nanomole level., J. Appl. Biochem. 5 (1983) 320-329
    in: Methods Enzymology, Vol. 143, Academic Press
    M. Hsiung, Y.Y. Yeo, K. Itiaba, et al., Cysteamine, penicillamine, glutathione, and their derivatives analyzed by automated ion exchange column chromatography, Biochem. Med. 19 (1978) 305-317. https://doi.org/10.1016/0006-2944(78)90032-7
    J. Wang, L. Zhou, H. Lei, et al., Simultaneous quantification of amino metabolites in multiple metabolic pathways using ultra-high performance liquid chromatography with tandem-mass spectrometry, Sci. Rep. 7 (2017) 1423. https://doi.org/10.1038/s41598-017-01435-7
    H.-M. Xiao, X. Wang, Q.-L. Liao, et al., Sensitive analysis of multiple low-molecular-weight thiols in a single human cervical cancer cell by chemical derivatization-liquid chromatography-mass spectrometry, The Analyst. 144 (2019) 6578-6585. https://doi.org/10.1039/C9AN01566C
    G.L. Ellman, A colorimetric method for determining low concentrations of mercaptans, Arch. Biochem. Biophys. 74 (1958) 443-450
    G.L. Ellman, Tissue sulfhydryl groups, Arch. Biochem. Biophys. 82 (1959) 70-77. https://doi.org/10.1016/0003-9861(59)90090-6
    E.B. Belldina, M.Y. Huang, J.A. Schneider, et al., Steady-state pharmacokinetics and pharmacodynamics of cysteamine bitartrate in paediatric nephropathic cystinosis patients: Pharmacokinetics of cysteamine, Br. J. Clin. Pharmacol. 56 (2003) 520-525. https://doi.org/10.1046/j.1365-2125.2003.01927.x
    A. Luaces-Rodriguez, V. Diaz-Tome, M. Gonzalez-Barcia, et al., Cysteamine polysaccharide hydrogels: Study of extended ocular delivery and biopermanence time by PET imaging, Int. J. Pharm. 528 (2017) 714-722. https://doi.org/10.1016/j.ijpharm.2017.06.060
    B. Coulomb, F. Robert-Peillard, E. Palacio, et al., Fast microplate assay for simultaneous determination of thiols and dissolved sulfides in wastewater, Microchem. J. 132 (2017) 205-210. https://doi.org/10.1016/j.microc.2017.01.022
    Y. Kim, D.H. Na, Simultaneous Determination of Cysteamine and Cystamine in Cosmetics by Ion-Pairing Reversed-Phase High-Performance Liquid Chromatography, Toxicol. Res. 35 (2019) 161-165. https://doi.org/10.5487/TR.2019.35.2.161
    S. Li, ed., Molecularly imprinted sensors: overview and applications, 1st ed, Elsevier, Amsterdam; Boston, 2012
    M.J. Kelly, D. Perrett, S.R. Rudge, The determination of cysteamine in physiological fluids by HPLC with electrochemical detection, Biomed. Chromatogr. BMC. 2 (1987) 216-220. https://doi.org/10.1002/bmc.1130020509
    L.A. Smolin, J.A. Schneider, Measurement of total plasma cysteamine using high-performance liquid chromatography with electrochemical detection, Anal. Biochem. 168 (1988) 374-379. https://doi.org/10.1016/0003-2697(88)90332-6
    R.A.G. Garcia, L.L. Hirschberger, M.H. Stipanuk, Measurement of cyst(e)amine in physiological samples by high performance liquid chromatography, Anal. Biochem. 170 (1988) 432-440. https://doi.org/10.1016/0003-2697(88)90655-0
    J.B. Raoof, R. Ojani, F. Chekin, Fabrication of functionalized carbon nanotube modified glassy carbon electrode and its application for selective oxidation and voltammetric determination of cysteamine, J. Electroanal. Chem. 633 (2009) 187-192. https://doi.org/10.1016/j.jelechem.2009.05.011
    R. Ojani, J.-B. Raoof, E. Zarei, Electrocatalytic oxidation and determination of Cysteamine by poly- N,N -dimethylaniline/ferrocyanide film modified carbon paste electrode, Electroanalysis. 21 (2009) 1189-1193. https://doi.org/10.1002/elan.200804530
    H. Karimi-Maleh, P. Biparva, M. Hatami, A novel modified carbon paste electrode based on NiO/CNTs nanocomposite and (9, 10-dihydro-9, 10-ethanoanthracene-11, 12-dicarboximido)-4-ethylbenzene-1, 2-diol as a mediator for simultaneous determination of cysteamine, nicotinamide adenine dinucleotide and folic acid, Biosens. Bioelectron. 48 (2013) 270-275. https://doi.org/10.1016/j.bios.2013.04.029
    H. Karimi-Maleh, M. Salimi-Amiri, F. Karimi, et al., A voltammetric sensor based on NiO nanoparticle-modified carbon-paste electrode for determination of cysteamine in the presence of high concentration of tryptophan, J. Chem. (2013). https://doi.org/10.1155/2013/946230
    V. Arabali, H. Karimi-Maleh, Electrochemical determination of cysteamine in the presence of guanine and adenine using a carbon paste electrode modified with N-(4-hydroxyphenyl)-3,5-dinitrobenzamide and magnesium oxide nanoparticles, Anal. Methods. 8 (2016) 5604-5610. https://doi.org/10.1039/C6AY01591C
    S. Salmanpour, M. Abbasghorbani, F. Karimi, et al., Electrocatalytic determination of cysteamine uses a nanostructure based electrochemical sensor in pharmaceutical samples, Curr. Anal. Chem. 13 (2016) 40-45. https://doi.org/10.2174/1573411012666160601143003
    A. Taherkhani, H. Karimi-Maleh, A.A. Ensafi, et al., Simultaneous determination of cysteamine and folic acid in pharmaceutical and biological samples using modified multiwall carbon nanotube paste electrode, Chin. Chem. Lett. 23 (2012) 237-240. https://doi.org/10.1016/j.cclet.2011.10.023
    M. Keyvanfard, S. Sami, H. Karimi-Maleh, et al., Electrocatalytic determination of cysteamine using multiwall carbon nanotube paste electrode in the presence of 3,4-dihydroxycinnamic acid as a homogeneous mediator, J. Braz. Chem. Soc. 24 (2013) 32-39. https://doi.org/10.1590/S0103-50532013000100006
    M. Keyvanfard, M. Ahmadi, F. Karimi, et al., Voltammetric determination of cysteamine at multiwalled carbon nanotubes paste electrode in the presence of isoproterenol as a mediator, Chin. Chem. Lett. 25 (2014) 1244-1246. https://doi.org/10.1016/j.cclet.2014.05.018
    B. Rezaei, H. Khosropour, A.A. Ensafi, Sensitive voltammetric determination of cysteamine using promazine hydrochloride as a mediator and modified multi-wall carbon nanotubes carbon paste electrodes, Ionics. 20 (2014) 1335-1342. https://doi.org/10.1007/s11581-013-1059-y
    S.Z. Mohammadi, S. Tajik, H. Beitollahi, et al., Sensitive Cysteamine Determination Using Disposable Electrochemical Sensor Based on Modified Screen Printed Electrode, Biquarterly Iran. J. Anal. Chem. 6 (2019). https://doi.org/10.30473/ijac.2019.45800.1142
    L.A. Smolin, K.F. Clark, J.G. Thoene, et al., A comparison of the effectiveness of cysteamine and phosphocysteamine in elevating plasma cysteamine concentration and decreasing leukocyte free cystine in nephropathic cystinosis, Pediatr. Res. 23 (1988) 616-620. https://doi.org/10.1203/00006450-198806000-00018
    R. Dohil, M. Fidler, B.A. Barshop, et al., Understanding intestinal cysteamine bitartrate absorption, J. Pediatr. 148 (2006) 764-769. https://doi.org/10.1016/j.jpeds.2006.01.050
    R. Dohil, B.L. Cabrera, J. Gangoiti, et al., The Effect of Food on Cysteamine Bitartrate Absorption in Healthy Participants, Clin. Pharmacol. Drug Dev. 1 (2012) 170-174. https://doi.org/10.1177/2160763X12454423
    T. Khomenko, J. Kolodney, J.T. Pinto, et al., New mechanistic explanation for the localization of ulcers in the rat duodenum: role of iron and selective uptake of cysteamine, Arch. Biochem. Biophys. 525 (2012) 60-70. https://doi.org/10.1016/j.abb.2012.05.013
    D. Armas, R.J. Holt, N.F. Confer, et al., A phase 1 pharmacokinetic study of cysteamine bitartrate delayed-release capsules following oral administration with orange juice, water, or omeprazole in cystinosis, Adv. Ther. 35 (2018) 199-209. https://doi.org/10.1007/s12325-018-0661-9
    R.L. Pisoni, G.Y. Park, V.Q. Velilla, et al., Detection and characterization of a transport system mediating cysteamine entry into human fibroblast lysosomes. Specificity for aminoethylthiol and aminoethylsulfide derivatives, J. Biol. Chem. 270 (1995) 1179-1184
    G. Medic, M. van der Weijden, A. Karabis, et al., A systematic literature review of cysteamine bitartrate in the treatment of nephropathic cystinosis, Curr. Med. Res. Opin. 33 (2017) 2065-2076. https://doi.org/10.1080/03007995.2017.1354288
    G. Devereux, S. Steele, K. Griffiths, et al., An open-label investigation of the pharmacokinetics and tolerability of oral cysteamine in adults with cystic fibrosis, Clin. Drug Investig. 36 (2016) 605-612. https://doi.org/10.1007/s40261-016-0405-z
    M.C. Fidler, B.A. Barshop, J.A. Gangoiti, et al., Pharmacokinetics of cysteamine bitartrate following gastrointestinal infusion, Br. J. Clin. Pharmacol. 63 (2007) 36-40. https://doi.org/10.1111/j.1365-2125.2006.02734.x
    D.G. de Matos, C.C. Furnus, The importance of having high glutathione (GSH) level after bovine in vitro maturation on embryo development effect of beta-mercaptoethanol, cysteine and cystine, Theriogenology. 53 (2000) 761-771. https://doi.org/10.1016/S0093-691X(99)00278-2
    P.D. Ray, B.-W. Huang, Y. Tsuji, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling, Cell. Signal. 24 (2012) 981-990. https://doi.org/10.1016/j.cellsig.2012.01.008
    V.S. Chopra, L.E. Chalifour, H.M. Schipper, Differential effects of cysteamine on heat shock protein induction and cytoplasmic granulation in astrocytes and glioma cells, Mol. Brain Res. 31 (1995) 173-184. https://doi.org/10.1016/0169-328X(95)00049-X
    T.M. Jeitner, D.A. Lawrence, Mechanisms for the cytotoxicity of cysteamine, Toxicol. Sci. Off. J. Soc. Toxicol. 63 (2001) 57-64
    O.I. Aruoma, B. Halliwell, B.M. Hoey, et al., The antioxidant action of taurine, hypotaurine and their metabolic precursors, Biochem. J. 256 (1988) 251-255
    J.W. Purdie, A comparative study of the radioprotective effects of cysteamine, WR-2721, and WR-1065 in cultured human cells, Radiat. Res. 77 (1979) 303-311
    C.K. Nair, D.K. Parida, T. Nomura, Radioprotectors in radiotherapy, J. Radiat. Res. (Tokyo). 42 (2001) 21-37
    M.A. Elmonem, K.R. Veys, N.A. Soliman, et al., Cystinosis: a review, Orphanet J. Rare Dis. 11 (2016) 47. https://doi.org/10.1186/s13023-016-0426-y
    M.J. Wilmer, J.P. Schoeber, L.P. van den Heuvel, et al., Cystinosis: practical tools for diagnosis and treatment, Pediatr. Nephrol. Berl. Ger. 26 (2011) 205-215. https://doi.org/10.1007/s00467-010-1627-6
    J.G. Thoene, R.G. Oshima, J.C. Crawhall, et al., Cystinosis. Intracellular cystine depletion by aminothiols in vitro and in vivo, J. Clin. Invest. 58 (1976) 180-189. https://doi.org/10.1172/JCI108448
    S. Bozdag, K. Gumus, O. Gumus, et al., Formulation and in vitro evaluation of cysteamine hydrochloride viscous solutions for the treatment of corneal cystinosis, Eur. J. Pharm. Biopharm. 70 (2008) 260-269. https://doi.org/10.1016/j.ejpb.2008.04.010
    M. Besouw, A. Tangerman, E. Cornelissen, et al., Halitosis in cystinosis patients after administration of immediate-release cysteamine bitartrate compared to delayed-release cysteamine bitartrate, Mol. Genet. Metab. 107 (2012) 234-236. https://doi.org/10.1016/j.ymgme.2012.06.017
    H. Inano, M. Onoda, K. Suzuki, et al., Inhibitory effects of WR-2721 and cysteamine on tumor initiation in mammary glands of pregnant rats by radiation, Radiat. Res. 153 (2000) 68-74
    X.-M. Wan, F. Zheng, L. Zhang, et al., Autophagy-mediated chemosensitization by cysteamine in cancer cells, Int. J. Cancer. 129 (2011) 1087-1095. https://doi.org/10.1002/ijc.25771
    T. Fujisawa, B. Rubin, A. Suzuki, et al., Cysteamine Suppresses Invasion, Metastasis and Prolongs Survival by Inhibiting Matrix Metalloproteinases in a Mouse Model of Human Pancreatic Cancer, PLOS ONE. 7 (2012) e34437. https://doi.org/10.1371/journal.pone.0034437
    A. Suzuki, R. Bhardwaj, P. Leland, et al., Cysteamine suppresses tumor metastasis by inhibiting activity of matrix metalloproteases without inducing toxicity in mouse models of human ovarian cancer, Cancer Res. 77 (2017) 4900-4900. https://doi.org/10.1158/1538-7445.AM2017-4900
    J.J. Nordlund, R.E. Boissy, V.J. Hearing, et al., eds., The Pigmentary System: Physiology and Pathophysiology, 1 edition, Oxford University Press, New York, 1998
    P.T. Rose, Pigmentary disorders, Med. Clin. North Am. 93 (2009) 1225-1239. https://doi.org/10.1016/j.mcna.2009.08.005
    E. Bastonini, D. Kovacs, M. Picardo, Skin Pigmentation and Pigmentary Disorders: Focus on Epidermal/Dermal Cross-Talk, Ann. Dermatol. 28 (2016) 279-289.https://doi.org/10.5021/ad.2016.28.3.279
    D. Rigopoulos, S. Gregoriou, A. Katsambas, Hyperpigmentation and melasma, J. Cosmet. Dermatol. 6 (2007) 195-202. https://doi.org/10.1111/j.1473-2165.2007.00321.x
    E.C. Davis, V.D. Callender, Postinflammatory Hyperpigmentation, J. Clin. Aesthetic Dermatol. 3 (2010) 20-31
    L. Nieuweboer-Krobotova, Hyperpigmentation: types, diagnostics and targeted treatment options: Hyperpigmentation, J. Eur. Acad. Dermatol. Venereol. 27 (2013) 2-4. https://doi.org/10.1111/jdv.12048
    E. Ephrem, H. Elaissari, H. Greige-Gerges, Improvement of skin whitening agents efficiency through encapsulation: Current state of knowledge, Int. J. Pharm. 526 (2017) 50-68. https://doi.org/10.1016/j.ijpharm.2017.04.020
    W. Chavin, W. Schlesinger, Some potent melanin depigmentary agents in the black goldfish, Naturwissenschaften. 53 (1966) 413-414
    M.A. Pathak, E. Frenk, G. Szabo, et al., Cutaneous depigmentation, Clin. Res. 14 (1966)
    E. Frenk, M.A. Pathak, G. Szabo, et al., Selective action of mercaptoethylamines on melanocytes in mammalian skin: experimental depigmentation, Arch. Dermatol. 97 (1968) 465-477
    C. Niu, H.A. Aisa, Upregulation of Melanogenesis and Tyrosinase Activity: Potential Agents for Vitiligo, Molecules. 22 (2017) 1303. https://doi.org/10.3390/molecules22081303
    C.D. Villarama, H.I. Maibach, Glutathione as a depigmenting agent: an overview, Int. J. Cosmet. Sci. 27 (2005) 147-153. https://doi.org/10.1111/j.1467-2494.2005.00235.x
    B. Kasraee, Peroxidase-Mediated Mechanisms Are Involved in the Melanocytotoxic and Melanogenesis-Inhibiting Effects of Chemical Agents, Dermatology. 205 (2002) 329-339. https://doi.org/10.1159/000066439
    E. Karg, G. Odh, A. Wittbjer, et al., Hydrogen peroxide as an inducer of elevated tyrosinase level in melanoma cells, J. Invest. Dermatol. 100 (1993) 209S-213S
    R. Djurhuus, A.M. Svardal, P.M. Ueland, Cysteamine increases homocysteine export and glutathione content by independent mechanisms in C3H/10T1/2 cells., Mol. Pharmacol. 38 (1990) 327-332
    M.J. Wilmer, L.A.J. Kluijtmans, T.J. van der Velden, et al., Cysteamine restores glutathione redox status in cultured cystinotic proximal tubular epithelial cells, Biochim. Biophys. Acta BBA - Mol. Basis Dis. 1812 (2011) 643-651. https://doi.org/10.1016/j.bbadis.2011.02.010
    N.P. Smit, H. Van der Meulen, H.K. Koerten, et al., Melanogenesis in cultured melanocytes can be substantially influenced by L-tyrosine and L-cysteine, J. Invest. Dermatol. 109 (1997) 796-800. https://doi.org/10.1111/1523-1747.ep12340980
    T. Meier, R.D. Issels, [11] Promotion of cyst(e)ine uptake, in: Methods Enzymol., Academic Press, 1995: pp. 103-112. https://doi.org/10.1016/0076-6879(95)52013-9
    M.I. Rendon, J.I. Gaviria, Review of Skin-Lightening Agents, Dermatol. Surg. 31 (2005) 886-890. https://doi.org/10.1111/j.1524-4725.2005.31736
    C. Hsu, H.A. Mahdi, M. Pourahmadi, et al., Cysteamine cream as a new skin depigmenting product, J. Am. Acad. Dermatol. 68 (2013). https://doi.org/10.1016/j.jaad.2012.12.781
    A. Laouini, C. Jaafar-Maalej, I. Limayem-Blouza, et al., Preparation, Characterization and Applications of Liposomes: State of the Art, J. Colloid Sci. Biotechnol. 1 (2012) 147-168. https://doi.org/10.1166/jcsb.2012.1020
    C. Zylberberg, S. Matosevic, Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape, Drug Deliv. 23 (2016) 3319-3329. https://doi.org/10.1080/10717544.2016.1177136
    A. Akbarzadeh, R. Rezaei-Sadabady, S. Davaran, et al., Liposome: classification, preparation, and applications, Nanoscale Res. Lett. 8 (2013) 102. https://doi.org/10.1186/1556-276X-8-102
    R. Gharib, H. Greige-Gerges, S. Fourmentin, et al., Liposomes incorporating cyclodextrin-drug inclusion complexes: Current state of knowledge, Carbohydr. Polym. 129 (2015) 175-186. https://doi.org/10.1016/j.carbpol.2015.04.048
    V. Roman, F. Bocquier, F. Leterrier, et al., Radioprotective effect of cysteamine entrapped in liposomes orally administered to the mouse, Comptes Rendus Seances Acad. Sci. Ser. III Sci. Vie. 295 (1982) 191-193
    T.M. Jeitner, J.R. Oliver, Possible oncostatic action of cysteamine on the pituitary glands of oestrogen-primed hyperprolactinaemic rats, J. Endocrinol. 127 (1990) 119-127.https://doi.org/10.1677/joe.0.1270119
    R. Challa, A. Ahuja, J. Ali, et al., Cyclodextrins in drug delivery: An updated review, AAPS PharmSciTech. 6 (2005) E329-E357. https://doi.org/10.1208/pt060243
    E.M.M. Del Valle, Cyclodextrins and their uses: a review, Process Biochem. 39 (2004) 1033-1046. https://doi.org/10.1016/S0032-9592(03)00258-9
    S. Ramnik, B. Nitin, M. Jyotsana, et al., Characterization of cyclodextrin inclusion complexes - a review, J. Pharm. Sci. Technol. 2 (2010) 171-183
    J. Bibette, F.L. Calderon, P. Poulin, Emulsions: basic principles, Rep. Prog. Phys. 62 (1999) 969-1033. https://doi.org/10.1088/0034-4885/62/6/203
    J.N. Coupland, D.J. McClements, Lipid oxidation in food emulsions, Trends Food Sci. Technol. 7 (1996) 83-91. https://doi.org/10.1016/0924-2244(96)81302-1
    H. Bridle, Chapter Nine - Nanotechnology for detection of waterborne pathogens, in: Waterborne Pathog., Academic Press, Amsterdam, 2014: pp. 291-318.https://doi.org/10.1016/B978-0-444-59543-0.00009-8
    K. Alaqad, T.A. Saleh, Gold and silver nanoparticles: synthesis methods, characterization routes and applications towards drugs, J. Environ. Anal. Toxicol. 6 (2016). https://doi.org/10.4172/2161-0525.1000384
    X. Liang, H. Wei, Z. Cui, et al., Colorimetric detection of melamine in complex matrices based on cysteamine-modified gold nanoparticles, The Analyst. 136 (2011) 179-183. https://doi.org/10.1039/C0AN00432D
    R. Cao, B. Li, A simple and sensitive method for visual detection of heparin using positively-charged gold nanoparticles as colorimetric probes, Chem. Commun. 47 (2011) 2865-2867. https://doi.org/10.1039/c0cc05094f
    J. Sun, J. Ge, W. Liu, et al., A facile assay for direct colorimetric visualization of lipopolysaccharides at low nanomolar level, Nano Res. 5 (2012) 486-493. https://doi.org/10.1007/s12274-012-0234-1
    Y. Jiang, H. Zhao, N. Zhu, et al., A Simple Assay for Direct Colorimetric Visualization of Trinitrotoluene at Picomolar Levels Using Gold Nanoparticles, Angew. Chem. Int. Ed. 47 (2008) 8601-8604. https://doi.org/10.1002/anie.200804066
    J. Kang, Y. Zhang, X. Li, et al., A Rapid Colorimetric Sensor of Clenbuterol Based on Cysteamine-Modified Gold Nanoparticles, ACS Appl. Mater. Interfaces. 8 (2016) 1-5. https://doi.org/10.1021/acsami.5b09079
    D. Zhao, C. Chen, L. Lu, et al., A label-free colorimetric sensor for sulfate based on the inhibition of peroxidase-like activity of cysteamine-modified gold nanoparticles, Sens. Actuators B Chem. 215 (2015) 437-444. https://doi.org/10.1016/j.snb.2015.04.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (222) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return