Citation: | Muhammad Abbas, Mirza Muhammad Faran Ashraf Baig, Yaliang Zhang, Yu-Shun Yang, Songyu Wu, Yiqiao Hu, Zhong-Chang Wang, Hai-Liang Zhu. A DNA-based nanocarrier for efficient cancer therapy[J]. Journal of Pharmaceutical Analysis, 2021, 11(3): 330-339. doi: 10.1016/j.jpha.2020.03.005 |
Y. Cong, L. Wang, Z. Wang, et al., Enhancing therapeutic efficacy of cisplatin by blocking DNA damage repair, ACS Med. Chem. Lett. 7 (2016) 924-928
|
X. Kang, H.H. Xiao, H.Q. Song, et al., Advances in drug delivery system for platinum agents based combination therapy, Cancer Biol Med. 12 (2015) 362-374
|
D. Wang, S. J. Lippard, Cellular processing of platinum anticancer drugs, Nat. Rev. Drug Discov. 4 (2005) 307-320
|
Y. Jung, S. J. Lippard, Direct cellular responses to platinum-induced DNA damage, Chem. Rev. 107 (2007) 1387-1407
|
Z. Zhou, Y. Hu, X. Shan, et al., Revealing three stages of DNA-Cisplatin reaction by a solid-state nanopore, Sci Rep. 5 (2015) 11868
|
S. Dhar, F. X. Gu, R. Langer, et al., Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt (IV) prodrug-PLGA-PEG nanoparticles, PNAS. 105 (2008) 17356-17361
|
L. Kelland, The resurgence of platinum-based cancer chemotherapy, Nat. Rev. Cancer. 7 (2007) 573-584
|
E. R. Jamieson, S. J. Lippard, Structure, recognition, and processing of Cisplatin-DNA adducts, Chem. Rev. 99 (1999) 2467-2498
|
B. Rosenberg, L. Vancamp, J. E. Trosko, et. al., Platinum compounds: a new class of potent antitumour agents, Nature. 222 (1969) 385-386
|
C. O. Leong, N. Vidnovic, M. P. D. Young, et al., The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers, J. Clin. Invest. 117 (2007) 1370-1380
|
S. Latcha, E. A. Jaimes, S Patil, et al., Long-term renal outcomes after Cisplatin treatment, Clin. J. Am. Soc. Nephrol. 11 (2016) 1173-1179
|
V. Kumar, S. Palazzolo, S. Bayda, et al., DNA nanotechnology for cancer therapy, Theranostics. 6 (2016) 710-725
|
M.M.F.A. Baig, Q.W. Zhang, X.H. Xia, et al. A DNA nanodevice simultaneously activating the EGFR and integrin for enhancing cytoskeletal activity and cancer cell treatment, Nano Lett. 19 (2019): 7503-7513
|
T. Toerring, K. V. Gothelf, DNA nanotechnology: a curiosity or a promising technology? F1000Prime Rep. 5 (2013) 5-14
|
N. C. Seeman, Nucleic acid junctions and lattices, J. Theor. Biol. 99 (1982) 237-247
|
N. R. Kallenbach, R. I. Ma, N C. Seeman, An immobile nucleic acid junction constructed from oligonucleotides, Nature. 305 (1983) 829-831
|
S. M. Douglas, I. Bachelet, G. M. Church, A logic-gated nanorobot for targeted transport of molecular payloads, Science. 335 (2012) 831-834
|
E. S. Andersen, M. Dong, M. M. Nielsen, et al. Self-assembly of a nanoscale DNA box with a controllable lid, Nature. 459 (2009) 73-76
|
Y. X. Zhao, A. Shaw, X. Zeng, et al. DNA origami delivery system for cancer therapy with tunable release properties, ACS nano. 6 (2012) 8684-8691
|
P. W. K. Rothemund, N. Papadakis, E. Winfree, Algorithmic self-assembly of DNA Sierpinski triangles, PLoS Biol. 2 (2004) e424
|
S. M. Douglas, H. Dietz, T. Liedl, et al., Self-assembly of DNA into nanoscale three-dimensional shapes, Nature. 459 (2009) 414-418
|
P. W. K. Rothemund, Folding DNA to create nanoscale shapes and patterns, Nature. 440 (2006) 297-302
|
T. Liedl, B. Hogberg, J. Tytell, et al., Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nature nanotechnology. 5 (2010) 520-524
|
H. Dietz, S. M. Douglas, W. M. Shih, et al., Folding DNA into twisted and curved nanoscale shapes, Science. 325 (2009) 725-730
|
B. Hogberg, T. Liedl, W. M. Shih, Folding DNA origami from a double-stranded source of scaffold, J Am Chem Soc. 131 (2009) 9154-9155
|
P. C. Patel, D. A. Giljohann, W. L. Daniel, et al., Self-assembly of DNA into nanoscale three-dimensional shapes, Nature. 459 (2009) 414-418
|
P. Wang, M. A. Rahman, Z. Zhao, et al., Visualization of the cellular uptake and trafficking of DNA origami nanostructures in cancer cells, J Am Chem Soc. 140 (2018) 2478-2484
|
J. B. Carter, X. Wang, Quant-iT™ PicoGreen® dsDNA Protocol for 454 Genome sequencer, CGB Technical Report, 2007
|
J. A. E. Monaghan, G. Pangborn, M. Westland, et al., Design tools for reporter strands and DNA origami scaffold strands, Theor Comput. Sci. 671 (2017) 69-78
|
H. Zheng, M. Xiao, Q. Yan, et al., Small circular DNA molecules act as rigid motifs to build DNA nanotubes, J Am Chem Soc. 136 (2014) 10194-10197
|
Y. Ma, H. Zheng, C. Wang, et al. RCA strands as scaffolds to create nanoscale shapes by a few staple strands, J Am Chem Soc. 135 (2013) 2959-2962
|
J. A. E. Monaghan, G. Pangborn, N. C. Seeman, et al., Self-assembly of chiral DNA nanotubes, J Am Chem Soc. 126 (2004) 16342-16343
|
E. V. Demidov, V. A. Komarov, A. N. Krushelnitckii, et al., Measurement of the thickness of block-structured bismuth films by atomic-force microscopy combined with selective chemical etching, Semiconductors. 51 (2017) 840-842
|
P. Desjardins, D. Conklin, Nanodrop microvolume quantitation of nucleic acids, JoVE. 45 (2010) e2565
|
Y. Xu, H. Yu, H. Qinet al. Inhibition of autophagy enhances cisplatin cytotoxicity through endoplasmic reticulum stress in human cervical cancer cells, Cancer lett. 314 (2012) 232-243
|
J. Li, H. Pei, B. Zhu, et al. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides, ACS nano. 5 (2011) 8783-8789
|
G. A. Erika, C. R. Rocio, L. O. H. Alberto, et al., Polymeric microparticles containing protein prepared using a controllable combination of diffusion and emulsification steps as part of the salting out procedure, Afr. J. Pharm. Pharmacol. 7 (2013) 2849-2858
|
M. V. Shirmanova, I. N. Druzhkova, M. M. Lukina, et al. Chemotherapy with cisplatin: insights into intracellular pH and metabolic landscape of cancer cells in vitro and in vivo, Sci Rep. 7 (2017) 8911
|
G. M. Morris, R. Huey, W. Lindstrom, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem. 30 (2009) 2785-2791
|
P. C. Patel, D. A. Giljohann, W. L. Daniel, et al., Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles, Bioconjug Chem. 21 (2010) 2250-2256
|
C. H. J. Choi, L. Hao, S. P. Narayan, et al., Mechanism for the endocytosis of spherical nucleic acid nanoparticle conjugates, PNAS. 110 (2013) 7625-7630
|
G. Vindigni, S. Raniolo, A. Ottaviani, et al., Receptor-mediated entry of pristine octahedral DNA nanocages in mammalian cells, ACS nano. 10 (2016) 5971-5979
|
L. Liang, Dr. J. Li, Dr. Q. Li, et al., Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells, Angew. Chem. Int. Ed. 53 (2014) 7745-7750
|
J. Yang, Q. Jiang, L. He, et al., Self-assembled double-bundle DNA tetrahedron for efficient antisense delivery, ACS Appl. Mater. Interfaces. 10 (2018) 23693-23699
|