Volume 11 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
Muhammad Abbas, Mirza Muhammad Faran Ashraf Baig, Yaliang Zhang, Yu-Shun Yang, Songyu Wu, Yiqiao Hu, Zhong-Chang Wang, Hai-Liang Zhu. A DNA-based nanocarrier for efficient cancer therapy[J]. Journal of Pharmaceutical Analysis, 2021, 11(3): 330-339. doi: 10.1016/j.jpha.2020.03.005
Citation: Muhammad Abbas, Mirza Muhammad Faran Ashraf Baig, Yaliang Zhang, Yu-Shun Yang, Songyu Wu, Yiqiao Hu, Zhong-Chang Wang, Hai-Liang Zhu. A DNA-based nanocarrier for efficient cancer therapy[J]. Journal of Pharmaceutical Analysis, 2021, 11(3): 330-339. doi: 10.1016/j.jpha.2020.03.005

A DNA-based nanocarrier for efficient cancer therapy

doi: 10.1016/j.jpha.2020.03.005
Funds:

This work was supported by the China Scholarship Council (CSC) grant (Grant No. 20180500458). We also thank the platform for characterization and test at State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, China for the assistance with the instrumentation.

  • Received Date: Nov. 25, 2019
  • Accepted Date: Mar. 05, 2020
  • Rev Recd Date: Mar. 02, 2020
  • Available Online: Jan. 24, 2022
  • Publish Date: Jun. 15, 2021
  • The study aimed to achieve enhanced targeted cytotoxicity and cell-internalization of cisplatin-loaded deoxyribonucleic acid-nanothread (CPT-DNA-NT), mediated by scavenger receptors into HeLa cells. DNA-NT was developed with stiff-topology utilizing circular-scaffold to encapsulate CPT. Atomic force microscopy (AFM) characterization of the DNA-NT showed uniformity in the structure with a diameter of 50–150 nm and length of 300–600 nm. The successful fabrication of the DNA-NT was confirmed through native-polyacrylamide gel electrophoresis analysis, as large the molecular-weight (polymeric) DNA-NT did not split into constituting strands under applied current and voltage. The results of cell viability confirmed that blank DNA-NT had the least cytotoxicity at the highest concentration (512 nM) with a viability of 92% as evidence of its biocompatibility for drug delivery. MTT assay showed superior cytotoxicity of CPT-DNA-NT than that of the free CPT due to the depot release of CPT after DNA-NT internalization. The DNA-NT exhibited targeted cell internalizations with the controlled intracellular release of CPT (from DNA-NT), as illustrated in confocal images. Therefore, in vitro cytotoxicity assessment through flow cytometry showed enhanced apoptosis (72.7%) with CPT-DNA-NT (compared to free CPT; 64.4%). CPT-DNA-NT, being poly-anionic, showed enhanced endocytosis via scavenger receptors.
  • loading
  • Y. Cong, L. Wang, Z. Wang, et al., Enhancing therapeutic efficacy of cisplatin by blocking DNA damage repair, ACS Med. Chem. Lett. 7 (2016) 924-928
    X. Kang, H.H. Xiao, H.Q. Song, et al., Advances in drug delivery system for platinum agents based combination therapy, Cancer Biol Med. 12 (2015) 362-374
    D. Wang, S. J. Lippard, Cellular processing of platinum anticancer drugs, Nat. Rev. Drug Discov. 4 (2005) 307-320
    Y. Jung, S. J. Lippard, Direct cellular responses to platinum-induced DNA damage, Chem. Rev. 107 (2007) 1387-1407
    Z. Zhou, Y. Hu, X. Shan, et al., Revealing three stages of DNA-Cisplatin reaction by a solid-state nanopore, Sci Rep. 5 (2015) 11868
    S. Dhar, F. X. Gu, R. Langer, et al., Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt (IV) prodrug-PLGA-PEG nanoparticles, PNAS. 105 (2008) 17356-17361
    L. Kelland, The resurgence of platinum-based cancer chemotherapy, Nat. Rev. Cancer. 7 (2007) 573-584
    E. R. Jamieson, S. J. Lippard, Structure, recognition, and processing of Cisplatin-DNA adducts, Chem. Rev. 99 (1999) 2467-2498
    B. Rosenberg, L. Vancamp, J. E. Trosko, et. al., Platinum compounds: a new class of potent antitumour agents, Nature. 222 (1969) 385-386
    C. O. Leong, N. Vidnovic, M. P. D. Young, et al., The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers, J. Clin. Invest. 117 (2007) 1370-1380
    S. Latcha, E. A. Jaimes, S Patil, et al., Long-term renal outcomes after Cisplatin treatment, Clin. J. Am. Soc. Nephrol. 11 (2016) 1173-1179
    V. Kumar, S. Palazzolo, S. Bayda, et al., DNA nanotechnology for cancer therapy, Theranostics. 6 (2016) 710-725
    M.M.F.A. Baig, Q.W. Zhang, X.H. Xia, et al. A DNA nanodevice simultaneously activating the EGFR and integrin for enhancing cytoskeletal activity and cancer cell treatment, Nano Lett. 19 (2019): 7503-7513
    T. Toerring, K. V. Gothelf, DNA nanotechnology: a curiosity or a promising technology? F1000Prime Rep. 5 (2013) 5-14
    N. C. Seeman, Nucleic acid junctions and lattices, J. Theor. Biol. 99 (1982) 237-247
    N. R. Kallenbach, R. I. Ma, N C. Seeman, An immobile nucleic acid junction constructed from oligonucleotides, Nature. 305 (1983) 829-831
    S. M. Douglas, I. Bachelet, G. M. Church, A logic-gated nanorobot for targeted transport of molecular payloads, Science. 335 (2012) 831-834
    E. S. Andersen, M. Dong, M. M. Nielsen, et al. Self-assembly of a nanoscale DNA box with a controllable lid, Nature. 459 (2009) 73-76
    Y. X. Zhao, A. Shaw, X. Zeng, et al. DNA origami delivery system for cancer therapy with tunable release properties, ACS nano. 6 (2012) 8684-8691
    P. W. K. Rothemund, N. Papadakis, E. Winfree, Algorithmic self-assembly of DNA Sierpinski triangles, PLoS Biol. 2 (2004) e424
    S. M. Douglas, H. Dietz, T. Liedl, et al., Self-assembly of DNA into nanoscale three-dimensional shapes, Nature. 459 (2009) 414-418
    P. W. K. Rothemund, Folding DNA to create nanoscale shapes and patterns, Nature. 440 (2006) 297-302
    T. Liedl, B. Hogberg, J. Tytell, et al., Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nature nanotechnology. 5 (2010) 520-524
    H. Dietz, S. M. Douglas, W. M. Shih, et al., Folding DNA into twisted and curved nanoscale shapes, Science. 325 (2009) 725-730
    B. Hogberg, T. Liedl, W. M. Shih, Folding DNA origami from a double-stranded source of scaffold, J Am Chem Soc. 131 (2009) 9154-9155
    P. C. Patel, D. A. Giljohann, W. L. Daniel, et al., Self-assembly of DNA into nanoscale three-dimensional shapes, Nature. 459 (2009) 414-418
    P. Wang, M. A. Rahman, Z. Zhao, et al., Visualization of the cellular uptake and trafficking of DNA origami nanostructures in cancer cells, J Am Chem Soc. 140 (2018) 2478-2484
    J. B. Carter, X. Wang, Quant-iT™ PicoGreen® dsDNA Protocol for 454 Genome sequencer, CGB Technical Report, 2007
    J. A. E. Monaghan, G. Pangborn, M. Westland, et al., Design tools for reporter strands and DNA origami scaffold strands, Theor Comput. Sci. 671 (2017) 69-78
    H. Zheng, M. Xiao, Q. Yan, et al., Small circular DNA molecules act as rigid motifs to build DNA nanotubes, J Am Chem Soc. 136 (2014) 10194-10197
    Y. Ma, H. Zheng, C. Wang, et al. RCA strands as scaffolds to create nanoscale shapes by a few staple strands, J Am Chem Soc. 135 (2013) 2959-2962
    J. A. E. Monaghan, G. Pangborn, N. C. Seeman, et al., Self-assembly of chiral DNA nanotubes, J Am Chem Soc. 126 (2004) 16342-16343
    E. V. Demidov, V. A. Komarov, A. N. Krushelnitckii, et al., Measurement of the thickness of block-structured bismuth films by atomic-force microscopy combined with selective chemical etching, Semiconductors. 51 (2017) 840-842
    P. Desjardins, D. Conklin, Nanodrop microvolume quantitation of nucleic acids, JoVE. 45 (2010) e2565
    Y. Xu, H. Yu, H. Qinet al. Inhibition of autophagy enhances cisplatin cytotoxicity through endoplasmic reticulum stress in human cervical cancer cells, Cancer lett. 314 (2012) 232-243
    J. Li, H. Pei, B. Zhu, et al. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides, ACS nano. 5 (2011) 8783-8789
    G. A. Erika, C. R. Rocio, L. O. H. Alberto, et al., Polymeric microparticles containing protein prepared using a controllable combination of diffusion and emulsification steps as part of the salting out procedure, Afr. J. Pharm. Pharmacol. 7 (2013) 2849-2858
    M. V. Shirmanova, I. N. Druzhkova, M. M. Lukina, et al. Chemotherapy with cisplatin: insights into intracellular pH and metabolic landscape of cancer cells in vitro and in vivo, Sci Rep. 7 (2017) 8911
    G. M. Morris, R. Huey, W. Lindstrom, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem. 30 (2009) 2785-2791
    P. C. Patel, D. A. Giljohann, W. L. Daniel, et al., Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles, Bioconjug Chem. 21 (2010) 2250-2256
    C. H. J. Choi, L. Hao, S. P. Narayan, et al., Mechanism for the endocytosis of spherical nucleic acid nanoparticle conjugates, PNAS. 110 (2013) 7625-7630
    G. Vindigni, S. Raniolo, A. Ottaviani, et al., Receptor-mediated entry of pristine octahedral DNA nanocages in mammalian cells, ACS nano. 10 (2016) 5971-5979
    L. Liang, Dr. J. Li, Dr. Q. Li, et al., Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells, Angew. Chem. Int. Ed. 53 (2014) 7745-7750
    J. Yang, Q. Jiang, L. He, et al., Self-assembled double-bundle DNA tetrahedron for efficient antisense delivery, ACS Appl. Mater. Interfaces. 10 (2018) 23693-23699
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (214) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return