Citation: | Vijayabhaskar Veeravalli, Hanumanth Srikanth Cheruvu, Pratima Srivastava, Lakshmi Mohan Vamsi Madgula. Three-dimensional aspects of formulation excipients in drug discovery: a critical assessment on orphan excipients, matrix effects and drug interactions[J]. Journal of Pharmaceutical Analysis, 2020, 10(6): 522-531. doi: 10.1016/j.jpha.2020.02.007 |
F. Pascal, The central role of excipients in drug formulation, Eur. Pharm. Rev. 18(2) (2013) 67-70
|
H. Alison, D.G. Beverley, Pharmaceutical Excipient - where do we begin, Aust. Prescr. 34(4) (2011) 112-114
|
C. Dorothy, C. Ron-Kun, Review of Current Issues in Pharmaceutical Excipients, Pharm. Tech. 31(5) (2007) 56-66
|
G.L. Pramod, K.S. Reddy, J.D. Reddy, et al. Global regulatory perspective of bulk pharmaceutical excipients, Pharm. Rev. 8(3) (2010)
|
J.C. Patrick, G.M. Luigi, Encyclopedia of pharmaceutical technology, third ed., Informa healthcare, New York, 2007
|
A. Katdare, M. Chaubal, Excipient development for pharmaceutical, biotechnology, and drug delivery systems, first ed., Informa Healthcare, New York, 2006
|
G. Pifferi, P. Restani, The safety of pharmaceutical excipients, Farmaco 58(8) (2003) 541-550
|
J. Sunil, Pharmaceutical Dosage Forms: Tablets. Vol. 1, J. Pharm. Sci. 79(11) (1990) 1043
|
P. Srivastava, Chapter 13, Excipients for Semisolid Formulations, in: A. Katdare, V.M. Chaubal (Eds.), Excipient Development for Pharmaceutical, Biotechnology, and Drug Delivery Systems, Informa healthcare, Inc, New York, 2006, pp. 197-224
|
T.G. Heath, D.O. Scott, Quantification of a potent 5-HT2a antagonist and an active metabolite in rat plasma and brain microdialysate by liquid chromatography-tandem mass spectrometry, J. Am. Soc. Mass Spec. 8(4) (1997) 371-379
|
T.V. Olah, D.A. McLoughlin, J.D. Gilbert, The simultaneous determination of mixtures of drug candidates by liquid chromatography/atmospheric pressure chemical ionization mass spectrometry as an in vivo drug screening procedure, Rapid Commun. Mass Spectrom. 11(1) (1997) 17-23
|
A.P. Watt, D. Morrison, K.L. Locker, et al. Higher throughput bioanalysis by automation of a protein precipitation assay using a 96-well format with detection by LC-MS/MS, Anal. Chem. 72(5) (2000) 979-984
|
T.R. Covey, E.D. Lee, J.D. Henion, High-speed liquid chromatography/tandem mass spectrometry for the determination of drugs in biological samples, Anal. Chem. 58(12) (1986) 2453-2460
|
T. Hall, I. Smukste, K. Bresciano, et al. Identifying and Overcoming Matrix Effects in Drug Discovery and Development, in: J.K. Prasain (Ed.), Tandem Mass Spectrometry-Applications and principles, Intech open, DOI:10.5772/32108, 2012
|
T. Brody, Chapter 7 - Drug-Drug Interactions: Part One (Small Molecule Drugs), FDA’s Drug Review Process and the Package Label, Academic Press, 2018, pp. 255-335
|
P.H. Thakkar, Influence of excipients on drug absorption via modulation of intestinal transporters activity, Asian J. Pharm. 9(2) (2015) 69-82
|
A.E. Nassar, P. Hollenberg, J. Scatina, Drug Metabolism Handbook: Concepts and Applications, John Wiley and Sons, Inc., New York, 2009
|
Z. Rao, L. Si, Y. Guan, et al. Inhibitive effect of cremophor RH40 or tween 80-based self-microemulsiflying drug delivery system on cytochrome P450 3A enzymes in murine hepatocytes, J. Huazhong Univ. Sci. Tech. [Medical Sciences] 30(5) (2010) 562-568
|
A. Engel, S. Oswald, W. Siegmund, et al. Pharmaceutical excipients influence the function of human uptake transporting proteins, Mol. Pharm. 9(9) (2012) 2577-2581
|
C. Wandel, R.B. Kim, C.M. Stein, "Inactive" excipients such as Cremophor can affect in vivo drug disposition, Clin. Pharm. Ther. 73(5) (2003) 394-396
|
X. Ren, X. Mao, L. Cao, et al. Nonionic surfactants are strong inhibitors of cytochrome P450 3A biotransformation activity in vitro and in vivo, Eur. J. Pharm. Sci. 36(4-5) (2009) 401-411
|
K. Sachs-Barrable, A. Thamboo, S.D. Lee, et al. Lipid excipients Peceol and Gelucire 44/14 decrease P-glycoprotein mediated efflux of rhodamine 123 partially due to modifying P-glycoprotein protein expression within Caco-2 cells, J. Pharm. Pharm. Sci. 10(3) (2007) 319-331
|
D.P. Elder, M. Kuentz, R. Holm, Pharmaceutical excipients - quality, regulatory and biopharmaceutical considerations, Eur. J. Pharm. Sci. 87 (2016) 88-99
|
B.J. Aungst, Optimizing Oral Bioavailability in Drug Discovery: An Overview of Design and Testing Strategies and Formulation Options, J. Pharm. Sci. 106(4) (2017) 921-929
|
N.H. Shah, M.T. Carvajal, C.I. Patel, et al. Self-emulsifying drug delivery systems (SEDDS) with polyglycolyzed glycerides for improving in vitro dissolution and oral absorption of lipophilic drugs, Int. J. Pharm. 106(1) (1994) 15-23
|
A.J. Humberstone, W.N. Charman, Lipid-based vehicles for the oral delivery of poorly water soluble drugs, Adv. Drug Deliv. Rev. 25(1) (1997) 103-128
|
H.D. Williams, N.L. Trevaskis, S.A. Charman, et al. Strategies to address low drug solubility in discovery and development, Pharmacol. Rev. 65(1) (2013) 315-499
|
C.J. Porter, N.L. Trevaskis, W.N. Charman, Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs, Nat. Rev. Drug Discov. 6(3) (2007) 231-248
|
R. Vandecruys, J. Peeters, G. Verreck, et al. Use of a screening method to determine excipients which optimize the extent and stability of supersaturated drug solutions and application of this system to solid formulation design, Int. J. Pharm. 342(1-2) (2007) 168-175
|
X.Q. Chen, K. Stefanski, H. Shen, et al. Oral delivery of highly lipophilic poorly water-soluble drugs: spray-dried dispersions to improve oral absorption and enable high-dose toxicology studies of a P2Y1 antagonist, J. Pharm. Sci. 103(12) (2014) 3924-3931
|
G.G. Liversidge, K.C. Cundy, Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs, Int. J. Pharm. 125(1) (1995) 91-97
|
E. Merisko-Liversidge, G.G. Liversidge, E.R. Cooper, Nanosizing: a formulation approach for poorly-water-soluble compounds, Eur. J. Pharm. Sci. 18(2) (2003) 113-120
|
T. Komasaka, H. Fujimura, T. Tagawa, et al. Practical method for preparing nanosuspension formulations for toxicology studies in the discovery stage: formulation optimization and in vitro/in vivo evaluation of nanosized poorly water-soluble compounds, Chem. Pharm. Bull. 62(11) (2014) 1073-1082
|
R.G. Strickley, Solubilizing excipients in oral and injectable formulations, Pharm. Res. 21(2) (2004) 201-230
|
A.K. Shah, S.A. Agnihotri, Recent advances and novel strategies in pre-clinical formulation development: an overview, J. Control. Release 156(3) (2011) 281-296
|
N. Kanojia, L. Kaur, M. Nagpal, et al. Modified Excipients in Novel Drug Delivery: Need of the Day, J. Pharm. Tech. Res. Manag. 1 (2013) 81-107
|
S. Neervannan, Preclinical formulations for discovery and toxicology: physicochemical challenges, Expert Opin. Drug Metab. Toxicol. 2(5) (2006) 715-731
|
R.C. Rowe, P.J. Sheskey, S.C. Owen, Handbook of pharmaceutical excipients, Pharmaceutical press, London, 2006
|
D. Wisher, Martindale: The Complete Drug Reference. 37th ed, Journal of the Medical Library Association 100(1) (2009) 2314-2315
|
Centers for Disease Control and Prevention, NIOSH Pocket Guide to Chemical Hazards, https://www.cdc.gov/niosh/npg/default.html
|
P. Nielsen, A. Mullertz, T. Norling, et al. The effect of α-tocopherol on the in vitro solubilisation of lipophilic drugs, Int. J. Pharm. 222(2) (2001) 217-224
|
P.P. Constantinides, A. Tustian, D.R. Kessler, Tocol emulsions for drug solubilization and parenteral delivery, Adv. Drug Deliv. Rev. 56(9) (2004) 1243-1255
|
Michael I. Ash, Handbook of fillers, extenders, and diluents, second ed., Synapse Information Resources, New York, 2007
|
K. Lee, S.C. Shin, I. Oh, Fluorescence spectroscopy studies on micellization of poloxamer 407 solution, Arch. Pharm. Res. 26(8) (2003) 653-658
|
J. Mata, P. Majhi, C. Guo, et al. Concentration, temperature, and salt-induced micellization of a triblock copolymer Pluronic L64 in aqueous media, J. Colloid Interface Sci. 292(2) (2005) 548-556
|
M.M. Jebari, N. Ghaouar, A. Aschi, et al. Aggregation behaviour of Pluronic® L64 surfactant at various temperatures and concentrations examined by dynamic light scattering and viscosity measurements, Polym. Int. 55(2) (2006) 176-183
|
G. Dumortier, N. El Kateb, M. Sahli, et al. Development of a thermogelling ophthalmic formulation of cysteine, Drug Dev. Ind. Pharm. 32(1) (2006) 63-72
|
H. Qi, W. Chen, C. Huang, et al. Development of a poloxamer analogs/carbopol-based in situ gelling and mucoadhesive ophthalmic delivery system for puerarin, Int. J. Pharm. 337(1-2) (2007) 178-187
|
A.M. Darwish, E. Hafez, I. El-Gebali, et al. Evaluation of a novel vaginal bromocriptine mesylate formulation: a pilot study, Fertil. Steril. 83(4) (2005) 1053-1055
|
A. El-Kamel, M. El-Khatib, Thermally reversible in situ gelling carbamazepine liquid suppository, Drug Deliv. 13(2) (2006) 143-148
|
Y. Wang, S. Liu, C.Y. Li, et al. A novel method for viral gene delivery in solid tumors, Cancer Res. 65(17) (2005) 7541-7545
|
G. Cornaire, J. Woodley, P. Hermann, et al. Impact of excipients on the absorption of P-glycoprotein substrates in vitro and in vivo, Int. J. Pharm. 278(1) (2004) 119-131
|
S.C. Gad, C.D. Cassidy, N. Aubert, et al. Nonclinical vehicle use in studies by multiple routes in multiple species, Int. J. Toxicol. 25(6) (2006) 499-521
|
Cosmetic Ingredient Review, Safety Assessment of Polyglyceryl Fatty Acid Esters as Used in Cosmetics, https://www.cir-safety.org/sites/default/files/PGlyFE092016FR.pdf, accessed on 01/05/2020
|
R. Bakhtiar, T.K. Majumdar, Tracking problems and possible solutions in the quantitative determination of small molecule drugs and metabolites in biological fluids using liquid chromatography-mass spectrometry, J. Pharmacol. Toxicol. Methods 55(3) (2007) 227-243
|
C. Cote, A. Bergeron, J.N. Mess, et al. Matrix effect elimination during LC-MS/MS bioanalytical method development, Bioanalysis 1(7) (2009) 1243-1257
|
H. Trufelli, P. Palma, G. Famiglini, et al. An overview of matrix effects in liquid chromatography-mass spectrometry, Mass Spectrom. Rev. 30(3) (2011) 491-509
|
V. Vijaya Bhaskar, Identification and Reduction of Matrix Effects Caused By Polyethylene Glycol 400 in Bioanalysis Using Liquid Chromatography/Tandem Mass Spectrometry, Int. J. Pharm. Innov. 3(1) (2013) 48-65
|
V. Vijaya Bhaskar, A. Middha, S. Tiwari, et al. Identification and reduction of matrix effects caused by cremophor EL in bioanalysis using liquid chromatography/tandem mass spectrometry, J. Anal. Bioanal. Tech. 4(3) (2013) 1-7
|
V. Vijaya Bhaskar, T. Sudhir, M. Anil, et al. Identification and Reduction of Matrix Effects Caused by Solutol Hs15 in Bioanalysis Using Liquid Chromatography/Tandem Mass Spectrometry, J. Anal. Bioanal. Tech. 4(166) (2013)
|
J.L. Little, M.F. Wempe, C.M. Buchanan, Liquid chromatography-mass spectrometry/mass spectrometry method development for drug metabolism studies: examining lipid matrix ionization effects in plasma, J. Chromatogr. B 833(2) (2006) 219-230
|
L.E. Sojo, G. Lum, P. Chee, Internal standard signal suppression by co-eluting analyte in isotope dilution LC-ESI-MS, Analyst 128(1) (2003) 51-54
|
X.S. Tong, J. Wang, S. Zheng, et al. Effect of signal interference from dosing excipients on pharmacokinetic screening of drug candidates by liquid chromatography/mass spectrometry, Anal. Chem. 74(24) (2002) 6305-6313
|
W.Z. Shou, W. Naidong, Post-column infusion study of the ‘dosing vehicle effect’in the liquid chromatography/tandem mass spectrometric analysis of discovery pharmacokinetic samples, Rapid Commun. Mass Spectrom. 17(6) (2003) 589-597
|
J. Schuhmacher, D. Zimmer, F. Tesche, et al. Matrix effects during analysis of plasma samples by electrospray and atmospheric pressure chemical ionization mass spectrometry: practical approaches to their elimination, Rapid Commun. Mass Spectrom. 17(17) (2003) 1950-1957
|
C.R. Mallet, Z. Lu, J.R. Mazzeo, A study of ion suppression effects in electrospray ionization from mobile phase additives and solid-phase extracts, Rapid Commun. Mass Spectrom. 18(1) (2004) 49-58
|
H. Mei, Y. Hsieh, C. Nardo, et al. Investigation of matrix effects in bioanalytical high-performance liquid chromatography/tandem mass spectrometric assays: application to drug discovery, Rapid Commun. Mass Spectrom. 17(1) (2003) 97-103
|
P.R. Tiller, L.A. Romanyshyn, Implications of matrix effects in ultra-fast gradient or fast isocratic liquid chromatography with mass spectrometry in drug discovery, Rapid Commun. Mass Spectrom. 16(2) (2002) 92-98
|
V. Vijaya Bhaskar, M. Anil, Liquid chromatography/tandem mass spectrometry method for quantitation of Cremophor EL and its applications, Int. J. Anal. Chem. (2013) 1-11
|
V. Vijaya Bhaskar, A. Middha, P. Srivastava, et al. Liquid chromatography/tandem mass spectrometry method for quantitative estimation of solutol HS15 and its applications, J. Pharm. Anal. 5(2) (2015) 120-129
|
V. Vijaya Bhaskar, A. Middha, S. Tiwari, et al. Determination of Cremophor EL in Rat Plasma by LC-MS/MS: Application to a Pharmacokinetic Study, J. Anal. Bioanal. Tech. 4 (2013) 163, doi: 10.4172/2155-9872.1000163
|
V. Vijaya Bhaskar, A. Middha, S. Tiwari, et al. Liquid chromatography/tandem mass spectrometry method for quantitative estimation of polyethylene glycol 400 and its applications, J. Chrom. B. 926 (2013) 68-76
|
X. Xu, H. Mei, S. Wang, et al. A study of common discovery dosing formulation components and their potential for causing time-dependent matrix effects in high-performance liquid chromatography tandem mass spectrometry assays, Rapid Commun. Mass Spectrom. 19(18) (2005) 2643-2650
|
P.J. Larger, M. Breda, D. Fraier, et al. Ion-suppression effects in liquid chromatography-tandem mass spectrometry due to a formulation agent, a case study in drug discovery bioanalysis, J. Pharm. Biomed. Anal. 39(1-2) (2005) 206-216
|
F. Li, M. Ewles, M. Pelzer, et al. Case studies: the impact of nonanalyte components on LC-MS/MS-based bioanalysis: strategies for identifying and overcoming matrix effects, Bioanalysis 5(19) (2013) 2409-2441
|
R. Weaver, R.J. Riley, Identification and reduction of ion suppression effects on pharmacokinetic parameters by polyethylene glycol 400, Rapid Commun. Mass Spectrom. 20(17) (2006) 2559-2564
|
Z. Liang, Perspectives on addressing ionization matrix effects in LC-MS bioanalysis, Bioanalysis 4(10) (2012) 1227-1234
|
R. King, R. Bonfiglio, C. Fernandez-Metzler, et al. Mechanistic investigation of ionization suppression in electrospray ionization, J. Am. Soc. Mass Spectrom. 11(11) (2000) 942-950
|
US Food and Drug Administration, Centre for Drug Evaluation and Research. Guidance for industry: bioanalytical method validation, 2001
|
B. Matuszewski, M. Constanzer, C. Chavez-Eng, Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC− MS/MS, Anal. Chem. 75(13) (2003) 3019-3030
|
R.B. Cole, Some tenets pertaining to electrospray ionization mass spectrometry, J. Mass Spectrom. 35(7) (2000) 763-772
|
L. Tang, P. Kebarle, Dependence of ion intensity in electrospray mass spectrometry on the concentration of the analytes in the electrosprayed solution, Anal. Chem. 65(24) (1993) 3654-3668
|
P. Kebarle, U.H. Verkerk, Electrospray: from ions in solution to ions in the gas phase, what we know now, Mass Spectrom. Rev. 28(6) (2009) 898-917
|
C.G. Enke, A predictive model for matrix and analyte effects in electrospray ionization of singly-charged ionic analytes, Anal. Chem. 69(23) (1997) 4885-4893
|
M.G. Ikonomou, A.T. Blades, P. Kebarle, Investigations of the electrospray interface for liquid chromatography/mass spectrometry, Anal. Chem. 62(9) (1990) 957-967
|
T.L. Constantopoulos, G.S. Jackson, C.G. Enke, Challenges in achieving a fundamental model for ESI, Anal. Chim. Acta 406(1) (2000) 37-52
|
R. Bonfiglio, R.C. King, T.V. Olah, et al. The effects of sample preparation methods on the variability of the electrospray ionization response for model drug compounds, Rapid Commun. Mass Spectrom. 13(12) (1999) 1175-1185
|
A. Apffel, S. Fischer, G. Goldberg, et al. Enhanced sensitivity for peptide mapping with electrospray liquid chromatography-mass spectrometry in the presence of signal suppression due to trifluoroacetic acid-containing mobile phases, J. Chromatogr. A 712(1) (1995) 177-190
|
M.a.H. Amad, N.B. Cech, G.S. Jackson, et al. Importance of gas-phase proton affinities in determining the electrospray ionization response for analytes and solvents, J. Mass Spectrom. 35(7) (2000) 784-789
|
N.B. Cech, C.G. Enke, Practical implications of some recent studies in electrospray ionization fundamentals, Mass Spectrom. Rev. 20(6) (2001) 362-387
|
P. Bennett, H. Liang, Overcoming matrix effects resulting from biological phospholipids through selective extractions in quantitative LC/MS/MS, 52nd ASMS Conference on Mass Spectrometry, Nashville, TN, 2004
|
E. Chambers, D.M. Wagrowski-Diehl, Z. Lu, et al. Systematic and comprehensive strategy for reducing matrix effects in LC/MS/MS analyses, J. Chromatogr. B 852(1-2) (2007) 22-34
|
M. Van Hout, H. Niederlander, R. De Zeeuw, et al. Ion suppression in the determination of clenbuterol in urine by solid-phase extraction atmospheric pressure chemical ionisation ion-trap mass spectrometry, Rapid Commun. Mass Spectrom. 17(3) (2003) 245-250
|
J.E. Renew, C.H. Huang, Simultaneous determination of fluoroquinolone, sulfonamide, and trimethoprim antibiotics in wastewater using tandem solid phase extraction and liquid chromatography-electrospray mass spectrometry, J. Chromatogr. A 1042(1-2) (2004) 113-121
|
E.D. Hugger, B.L. Novak, P.S. Burton, et al. A comparison of commonly used polyethoxylated pharmaceutical excipients on their ability to inhibit P-glycoprotein activity in vitro, J. Pharm. Sci. 91(9) (2002) 1991-2002
|
J.M. Dintaman, J.A. Silverman, Inhibition of P-glycoprotein by D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), Pharm. Res. 16(10) (1999) 1550-1556
|
P.G. Komarov, A.A. Shtil, L.E. Buckingham, et al. Inhibition of cytarabine-induced MDR1 (P-glycoprotein) gene activation in human tumor cells by fatty acid-polyethylene glycol-fatty acid diesters, novel inhibitors of P-glycoprotein function, Int. J. Cancer 68(2) (1996) 245-250
|
L. Bromberg, V. Alakhov, Effects of polyether-modified poly (acrylic acid) microgels on doxorubicin transport in human intestinal epithelial Caco-2 cell layers, J. Control Release 88(1) (2003) 11-22
|
O.A. Badary, O.A. Al-Shabanah, N.M. Al-Gharably, et al. Effect of Cremophor EL on the pharmacokinetics, antitumor activity and toxicity of doxorubicin in mice, Anticancer Drugs 9(9) (1998) 809-815
|
S.W. Wang, J. Monagle, C. McNulty, et al. Determination of P-glycoprotein inhibition by excipients and their combinations using an integrated high-throughput process, J. Pharm. Sci. 93(11) (2004) 2755-2767
|
R.C. Bravo Gonzalez, J. Huwyler, F. Boess, et al. In vitro investigation on the impact of the surface-active excipients Cremophor EL, Tween 80 and Solutol HS 15 on the metabolism of midazolam, Biopharm. Drug Dispos. 25(1) (2004) 37-49
|
D.R. Bhagwant, X.Y. Lawrence, S.H. Ajaz, et al. Effect of common excipients on Caco-2 transport of low-permeability drugs, J. Pharm. Sci. 90(11) (2001) 1776-1786
|
E.K. Anderberg, C. Nystrom, P. Artursson, Epithelial transport of drugs in cell culture. VII: Effects of pharmaceutical surfactant excipients and bile acids on transepithelial permeability in monolayers of human intestinal epithelial (Caco-2) cells, J. Pharm. Sci. 81(9) (1992) 879-887
|
G. Martin, C. Marriott, I. Kellaway, Direct effect of bile salts and phospholipids on the physical properties of mucus, Gut 19(2) (1978) 103-107
|
M. Tomita, M. Hayashi, T. Horie, et al. Enhancement of colonic drug absorption by the transcellular permeation route, Pharm. Res. 5(12) (1988) 786-789
|
T. Yamagata, M. Morishita, H. Kusuhara, et al. Characterization of the inhibition of breast cancer resistance protein-mediated efflux of mitoxantrone by pharmaceutical excipients, Int. J. Pharm. 370(1-2) (2009) 216-219
|
J.S.H. Yoo, T.J. Smith, S.M. Ning, et al. Modulation of the levels of cytochromes P450 in rat liver and lung by dietary lipid, Biochem. Pharmacol. 43(12) (1992) 2535-2542
|
T.R. Buggins, P.A. Dickinson, G. Taylor, The effects of pharmaceutical excipients on drug disposition, Adv. Drug Deliv. Rev. 59(15) (2007) 1482-1503
|
P. Martin, M. Giardiello, T.O. McDonald, et al. Mediation of in vitro cytochrome P450 activity by common pharmaceutical excipients, Mol. Pharm. 10(7) (2013) 2739-2748
|
C. Zhang, Y. Xu, Q. Zhong, et al. In vitro evaluation of the inhibitory potential of pharmaceutical excipients on human carboxylesterase 1A and 2, PLos One 9(4) (2014) e93819
|
L. Tompkins, C. Lynch, S. Haidar, et al. Effects of commonly used excipients on the expression of CYP3A4 in colon and liver cells, Pharm. Res. 27(8) (2010) 1703-1712
|
X. Ren, X. Mao, L. Si, et al. Pharmaceutical excipients inhibit cytochrome P450 activity in cell free systems and after systemic administration, Eur. J. Pharm. Biopharm. 70(1) (2008) 279-288
|