Citation: | Dandan Xia, Baoling Liu, Xiaowei Xu, Ya Ding, Qiuling Zheng. Drug target discovery by magnetic nanoparticles coupled mass spectrometry[J]. Journal of Pharmaceutical Analysis, 2021, 11(1): 122-127. doi: 10.1016/j.jpha.2020.02.002 |
U.A. Betz, How many genomics targets can a portfolio afford?, Drug. Discov. Today. 10 (2005) 1057-1063
|
T. Miljenovic, X. Jia, P. Lavrencic, et al, A non-uniform sampling approach enables studies of dilute and unstable proteins, J. Biomol. NMR. 68 (2017) 119-127
|
D.F. Wyss, Y.S. Wang, H.L. Eaton, et al, Combining NMR and X-ray crystallography in fragment-based drug discovery: discovery of highly potent and selective BACE-1 inhibitors, Top. Curr. Chem. 317 (2012) 83-114
|
A. Topf, P. Franz, G. Tsiavaliaris, MicroScale Thermophoresis (MST) for studying actin polymerization kinetics, BioTechniques. 63 (2017) 187-190
|
R.R. Abzalimov, D.A. Kaplan, M.L. Easterling, et al, Protein conformations can be probed in top-down HDX MS experiments utilizing electron transfer dissociation of protein ions without hydrogen scrambling, J. Am. Soc. Mass. Spectrom. 20 (2009) 1514-1517
|
L.M. Jones, H. Zhang, W. Cui, et al, Complementary MS methods assist conformational characterization of antibodies with altered S-S bonding networks, J. Am. Soc. Mass. Spectrom. 24 (2013) 835-845
|
Y. Lu, H. Zhang, D.M. Niedzwiedzki, et al, Fast Photochemical Oxidation of Proteins Maps the Topology of Intrinsic Membrane Proteins: Light-Harvesting Complex 2 in a Nanodisc, Anal. Chem. 88 (2016) 8827-8834
|
P. Liu, J. Zhang, C.N. Ferguson, et al, Measuring protein-ligand interactions using liquid sample desorption electrospray ionization mass spectrometry, Anal. Chem. 85 (2013) 11966-11972
|
Q. Zheng, H. Chen, Development and Applications of Liquid Sample Desorption Electrospray Ionization Mass Spectrometry, Annu. Rev. Anal. Chem. 9 (2016) 411-448
|
I.D. Campuzano, H. Li, D. Bagal, et al, Native MS Analysis of Bacteriorhodopsin and an Empty Nanodisc by Orthogonal Acceleration Time-of-Flight, Orbitrap and Ion Cyclotron Resonance, Anal. Chem. 88 (2016) 12427-12436
|
F. Debaene, A. Boeuf, E. Wagner-Rousset, et al, Innovative native MS methodologies for antibody drug conjugate characterization: High resolution native MS and IM-MS for average DAR and DAR distribution assessment, Anal. Chem. 86 (2014) 10674-10683
|
Y. Yan, G. Chen, H. Wei, et al, Fast photochemical oxidation of proteins (FPOP) maps the epitope of EGFR binding to adnectin, J. Am. Soc. Mass. Spectrom. 25 (2014) 2084-2092
|
M.B. Nodwell, S.A. Sieber, ABPP methodology: introduction and overview, Top. Curr. Chem. 324 (2012) 1-41
|
J.G. Smith, R.E. Gerszten, Emerging Affinity-Based Proteomic Technologies for Large-Scale Plasma Profiling in Cardiovascular Disease, Circulation. 135 (2017) 1651-1664
|
S.J. Won, J.D. Eschweiler, J.D. Majmudar, et al, Affinity-Based Selectivity Profiling of an In-Class Selective Competitive Inhibitor of Acyl Protein Thioesterase 2, ACS. Med. Chem. Lett. 8 (2017) 215-220
|
H. Jiang, A.M. English, Quantitative analysis of the yeast proteome by incorporation of isotopically labeled leucine, J. Proteome. Res. 1 (2002) 345-350
|
S.-E. Ong, M. Schenone, A.A. Margolin, et al, Identifying the proteins to which small-molecule probes and drugs bind in cells, Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 4617-4622
|
D. Martinez Molina, R. Jafari, M. Ignatushchenko, et al, Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay, Science. 341 (2013) 84-87
|
D. Martinez Molina, P. Nordlund, The Cellular Thermal Shift Assay: A Novel Biophysical Assay for In Situ Drug Target Engagement and Mechanistic Biomarker Studies, Annu. Rev. Pharmacol. Toxicol. 56 (2016) 141-161
|
M.M. Derry, R.R. Somasagara, K. Raina, et al, Target identification of grape seed extract in colorectal cancer using drug affinity responsive target stability (DARTS) technique: role of endoplasmic reticulum stress response proteins, Curr. Cancer. Drug. Targets. 14 (2014) 323-336
|
B. Lomenick, R. Hao, N. Jonai, et al, Target identification using drug affinity responsive target stability (DARTS), Proc. Natl. Acad. Sci. U.S.A. 106 (2009) 21984-21989
|
Y. Feng, G. De Franceschi, A. Kahraman, et al, Global analysis of protein structural changes in complex proteomes, Nat. Biotechnol. 32 (2014) 1036
|
A. Fontana, P.P. de Laureto, B. Spolaore, et al, Probing protein structure by limited proteolysis, Acta Biochim. Pol. 51 (2004) 299-321
|
K.E. Albinali, M.M. Zagho, Y. Deng, et al, A perspective on magnetic core-shell carriers for responsive and targeted drug delivery systems, Int. J. Nanomedicine. 14 (2019) 1707-1723
|
T.M. Allen, P.R. Cullis, Drug delivery systems: entering the mainstream, Science. 303 (2004) 1818-1822
|
S.D. Anderson, V.V. Gwenin, C.D. Gwenin, Magnetic Functionalized Nanoparticles for Biomedical, Drug Delivery and Imaging Applications, Nanoscale. Res. Lett. 14 (2019) 188
|
D. Song, R. Yang, F. Long, et al, Applications of magnetic nanoparticles in surface-enhanced Raman scattering (SERS) detection of environmental pollutants, J. Environ. Sci. 80 (2019) 14-34
|
P. Kumar, S. Agnihotri, I. Roy, Preparation and characterization of superparamagnetic iron oxide nanoparticles for magnetically guided drug delivery, Int. J. Nanomedicine. 13 (2018) 43-46
|
S. Laurent, M. Mahmoudi, Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of cancer, Int. J. Mol. Epidemiol. Genet. 2 (2011) 367-390
|
J. Liu, Z. Sun, Y. Deng, et al, Highly Water-Dispersible Biocompatible Magnetite Particles with Low Cytotoxicity Stabilized by Citrate Groups, Angew. Chem. Int. Ed. Engl. 48 (2009) 5875-5879
|
F. Yan, R. Sun, Facile synthesis of bifunctional Fe3O4/Au nanocomposite and their application in catalytic reduction of 4-nitrophenol, Mater. Res. Bull. 57 (2014) 293-299
|