Volume 11 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
N. Dhanalakshmi, T. Priya, S. Thennarasu, S. Sivanesan, N. Thinakaran. Synthesis and electrochemical properties of environmental free l-glutathione grafted graphene oxide/ZnO nanocomposite for highly selective piroxicam sensing[J]. Journal of Pharmaceutical Analysis, 2021, 11(1): 48-56. doi: 10.1016/j.jpha.2020.02.001
Citation: N. Dhanalakshmi, T. Priya, S. Thennarasu, S. Sivanesan, N. Thinakaran. Synthesis and electrochemical properties of environmental free l-glutathione grafted graphene oxide/ZnO nanocomposite for highly selective piroxicam sensing[J]. Journal of Pharmaceutical Analysis, 2021, 11(1): 48-56. doi: 10.1016/j.jpha.2020.02.001

Synthesis and electrochemical properties of environmental free l-glutathione grafted graphene oxide/ZnO nanocomposite for highly selective piroxicam sensing

doi: 10.1016/j.jpha.2020.02.001
Funds:

This work was supported by SERB (Science and Engineering Research Board), New Delhi, India [File. No: EMR/2014/000020].

  • Received Date: Oct. 10, 2019
  • Accepted Date: Feb. 03, 2020
  • Rev Recd Date: Nov. 28, 2019
  • Available Online: Jan. 24, 2022
  • Publish Date: Feb. 15, 2021
  • A simple and reliable strategy was proposed to engineer the glutathione grafted graphene oxide/ZnO nanocomposite (glutathione-GO/ZnO) as electrode material for the high-performance piroxicam sensor. The prepared glutathione-GO/ZnO nanocomposite was well characterized by X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). The novel nanocomposite modified electrode showed the highest electrocatalytic activity towards piroxicam (oxidation potential is 0.52 V). Under controlled experimental parameters, the proposed sensor exhibited good linear responses to piroxicam concentrations ranging from 0.1 to 500 μM. The detection limit and sensitivity were calculated as 1.8 nM and 0.2 μA/μM·cm2, respectively. Moreover, it offered excellent selectivity, reproducibility, and long-term stability and can effectively ignore the interfering candidates commonly existing in the pharmaceutical tablets and human fluids even at a higher concentration. Finally, the reported sensor was successfully employed to the direct determination of piroxicam in practical samples.
  • loading
  • J. G. Hardman, L. E. Limbird, A. Goodman-Gilman, The pharmacological basis of therapeutics, McGraw Hill, New York, 2001, pp 1295-1312
    H. E. Paulus, D. E. Furst, S. H. Dromgoole, (Eds), Drugs for rheumatic disease, Churchill Livingstone, 1987, Vol. 8
    A. Babaei, M. Sohrabi, M. Afrasiabi, A sensitive simultaneous determination of epinephrine and piroxicam using a glassy carbon electrode modified with a nickel hydroxide nanoparticles/multiwalled carbon nanotubes composite, Electroanalysis, 24(12) (2012) 2387-2394
    F. Bessone, Non-steroidal anti-inflammatory drugs: What is the actual risk of liver damage, World J. Gastroenterol. WJG. 16(45) (2010) 5651
    Database of Prevalence of arthritis rising among Indians, Compilation prepared by Standard Bussiness,https://www.deccanchronicle.com/lifestyle/health-and-wellbeing/121017/prevalence-of-arthritis-rising-among-indians.html (Published Oct 12, 2017, 12:36 pm IST)
    J. L. Manzoori, M. Amjadi, Spectrofluorimetric determination of piroxicam in pharmaceutical preparations and spiked human serum using micellar media, Microchim. Acta. 143(1) (2003) 39-44
    S. M. Al-Kindy, A. Al-Wishahi, F. E. O. Suliman, A sequential injection method for the determination of piroxicam in pharmaceutical formulations using europium sensitized fluorescence, Talanta, 64(5) (2004) 1343-1350
    B. S. Nagaralli, J. Seetharamappa, M. B. Melwanki, Sensitive spectrophotometric methods for the determination of amoxycillin, ciprofloxacin and piroxicam in pure and pharmaceutical formulations, J. Pharm. Biomed. Anal. 29(5) (2002) 859-864
    A. J. Nepote, L. Vera-Candiotti, M. R. Williner, et al., Development and validation of chemometrics-assisted spectrophotometry and micellar electrokinetic chromatography for the determination of four-component pharmaceuticals, Anal. Chim. Acta. 489(1) (2003) 77-84
    M. Sultan, G. Stecher, W. M. Stoggl, et al., Sample pretreatment and determination of non steroidal anti-inflammatory drugs (NSAIDs) in pharmaceutical formulations and biological samples (blood, plasma, erythrocytes) by HPLC-UV-MS and μ-HPLC, Curr. Med. Chem. 12(5) (2005) 573-588
    M. Starek, J. Krzek, M. Tarsa, et al., Determination of piroxicam and degradation products in drugs by TLC, Chromatographia. 69(3-4) (2009) 351-356
    A. Doliwa, S. Santoyo, M. A. Campanero, et al., Sensitive LC determination of piroxicam after in vitro transdermal permeation studies, J. Pharm. Biomed. Anal. 26(4) (2001) 531-537
    Y. L. Chen, S. M. Wu, Capillary zone electrophoresis for simultaneous determination of seven nonsteroidal anti-inflammatory drugs in pharmaceuticals, Anal. Bioanal. Chem. 381(4) (2005) 907-912
    H. Karimi-Maleh, F. Tahernejad-Javazmi, N. Atar, et al., A novel DNA biosensor based on a pencil graphite electrode modified with polypyrrole/functionalized multiwalled carbon nanotubes for determination of 6-mercaptopurine anticancer drug, Ind. Eng. Chem. Res. 54(14) (2015) 3634-3639
    M. Ramrakhiani, Nanostructures and their applications, Recent. Res. Sci. technol. 4(8) (2012) 14-19
    K. Ghanbari, S. Bonyadi, An electrochemical sensor based on reduced graphene oxide decorated with polypyrrole nanofibers and zinc oxide-copper oxide p-n junction heterostructures for the simultaneous voltammetric determination of ascorbic acid, dopamine, paracetamol, and tryptophan, New J. Chem. 42(11) (2018) 8512-8523
    M. M. Rahman, H. M. Marwani, F. K. Algethami, et al., Xanthine sensor development based on ZnO-CNT, ZnO-CB, ZnO-GO and ZnO nanoparticles: an electrochemical approach, New J. Chem. 41(14) (2017) 6262-6271
    S. Priyadarsini, S. Mohanty, S. Mukherjee, et al., Graphene and graphene oxide as nanomaterials for medicine and biology application, J. Nanostructure. Chem. 8(2) (2018) 123-137
    C. I. Justino, A. R. Gomes, A. C. Freitas, et al., Graphene based sensors and biosensors, TrAC Trends. Anal. Chem. 91 (2017) 53-66
    M. L. Yola, V. K. Gupta, T. Eren, et al., A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin, Electrochim. Acta, 120 (2014) 204-211
    N. F. Atta, A. Galal, E. H. El-Ads, Graphene-a platform for sensor and biosensor applications. Biosensors-Micro and Nanoscale Applications, 2015, pp 37-84. https://doi.org/10.5772/60676
    V. Georgakilas, J. N. Tiwari, K. C. Kemp, et al., Non covalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications, Chem. Rev. 116(9) (2016) 5464-5519
    T. A. Pham, J. S. Kim, J. S. Kim, One-step reduction of graphene oxide with L-glutathione, Colloids. Surf. A. 384(1-3) (2011) 543-548
    G. A. Bagiyan, I. K. Koroleva, N. V. Soroka, et al., Oxidation of thiol compounds by molecular oxygen in aqueous solutions, Russ. Chem. Bull. 52(5) (2003) 1135-1141
    M. J. Fernaandez-Merino, L. Guardia, J. I. Paredes, et al., Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions, J. Phys. Chem. C, 114(14) (2010) 6426-6432
    C. Zhu, S. Guo, Y. Fang, et al., Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets, ACS nano, 4(4) (2010) 2429-2437
    N. Dhanalakshmi, T. Priya, N. Thinakaran, Highly electroactive Ce-ZnO/rGO nanocomposite: Ultra-sensitive electrochemical sensing platform for carbamazepine determination, J. Electroanal. Chem. 826 (2018) 150-156
    S. Chhetri, N. C. Adak, P. Samanta, et al., Investigation of the mechanical and thermal properties of l-glutathione modified graphene/epoxy composites, Compos. B Eng. 143 (2018) 105-112
    R. Hrdy, H. Kynclova, J. Drbohlavova, et al., Electrochemical impedance spectroscopy behaviour of guanine on nanostructured planar electrode, Int. J. Electrochem. Sci. 8 (2013) 4384-4396
    Z. Zhao, J. Zhang, W. Wang, et al., Synthesis and electrochemical properties of Co3O4-rGO/CNTs composites towards highly sensitive nitrite detection, Appl. Surf. Sci. 485 (2019) 274-282
    A. Wong, A. M. Santos, O. Fatibello-Filho, Determination of piroxicam and nimesulide using an electrochemical sensor based on reduced graphene oxide and PEDOT: PSS, J. Electroanal. Chem. 799 (2017) 547-555
    P. Norouzi, N. Ghaheri, β-Cyclodextrine modified carbon paste electrode as a selective sensor for determination of piroxicam using flow injection cyclic voltammetry, Anal. Bioanal. Electrochem. 3 (2011) 87-101
    J. W. Zhang, R. F. Li, L. Yao, et al., Highly sensitive determination of piroxicam using a glassy carbon electrode modified with silver nanoparticles dotted single walled carbon nanotubes-reduced graphene oxide nanocomposite, J. Electroanal. Chem. 823 (2018) 1-8
    A. Babaei, M. Afrasiabi, H. Moghanian, A new sensor based on the glassy carbon electrode modified with poly aspartic acid-Fe3O4 nanoparticle/multi-walled carbon nanotubes composite for a selective simultaneous determination of piroxicam and clopidogrel in the presence of uric acid, Anal. Bioanal. Electrochem. 9(6) (2017) 741-761
    M. B. Gholivand, G. Malekzadeh, A. A. Derakhshan, Boehmite nanoparticle modified carbon paste electrode for determination of piroxicam, Sens. Actuators B Chem. 201 (2014) 378-386
    H. Karimi-Maleh, I. Sheikhshoaie, A. Samadzadeh, Simultaneous electrochemical determination of levodopa and piroxicam using a glassy carbon electrode modified with a ZnO-Pd/CNT nanocomposite, RSC adv. 8(47) (2018) 26707-26712
    F. Y. Kong, R. F. Li, L. Yao, et al., Pt nanoparticles supported on nitrogen doped reduced graphene oxide-single wall carbon nanotubes as a novel platform for highly sensitive electrochemical sensing of piroxicam, J. Electroanal. Chem. 832 (2019) 385-391
    A. M. Santos, A. Wong, F. C. Vicentini, et al., Simultaneous voltammetric sensing of levodopa, piroxicam, ofloxacin and methocarbamol using a carbon paste electrode modified with graphite oxide and β-cyclodextrin, Microchim. Acta. 186(3) (2019) 174
    G. Ghobadpour, F. Farjami, F. Fasihi, Sensitive electrochemical monitoring of piroxicam in pharmaceuticals using carbon ionic liquid electrode, Curr. Pharm. Anal. 15(1) (2019) 45-50
    T. Shaikh, F. N. Talpur, A. R. Khaskeli, et al., Ultrasensitive determination of piroxicam at diflunisal-derived gold nanoparticle-modified glassy carbon electrode, J. Electron. Mater. 46(10) (2017) 5957-5966
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (388) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return