Citation: | Sana Usman, Maria Khawer, Shazia Rafique, Zara Naz, Komal Saleem. The current status of anti-GPCR drugs against different cancers[J]. Journal of Pharmaceutical Analysis, 2020, 10(6): 517-521. doi: 10.1016/j.jpha.2020.01.001 |
K. Lundstrom, Structural genomics of GPCRs, Trends Biotechnol. 23 (2005) 103-108
|
M. Rask-Andersen, M. S. Almen, H. B. Schioth, Trends in the exploitation of novel drug targets, Nat. Rev. Drug Discov. 10 (2011) 579-590
|
D. Young, G. Waitches, C. Birchmeier, et al, Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains, Cell 45 (1986) 711-719
|
K. Noguchi, D. Herr, T. Mutoh, et al, Lysophosphatidic acid (LPA) and its receptors, Curr. Opin. Pharmacol. 9 (2009) 15-23
|
B. E. Krumm, R. Grisshammer, Peptide ligand recognition by G protein-coupled receptors, Front Pharmacol. 6 (2015) 48
|
F. Balkwill, Cancer and the chemokine network, Nat. Rev. Cancer 4 (2004) 540-550
|
Y. Matsuo, M. Raimondo, T. A. Woodward, et al, CXC-chemokine/CXCR2 biological axis promotes angiogenesis in vitro and in vivo in pancreatic cancer, Int. J. Cancer 125 (2009) 1027-1037
|
J. Xu, C. Zhang, Y. He, et al, Lymphatic endothelial cell-secreted CXCL1 stimulates lymphangiogenesis and metastasis of gastric cancer, Int. J. Cancer 130 (2012) 787-797
|
J. Tang, Z. Li, L. Lu, et al, beta-Adrenergic system, a backstage manipulator regulating tumour progression and drug target in cancer therapy, Semin. Cancer Biol. 23 (2013) 533-542
|
F. Labrie, A. Belanger, V. Luu-The, et al, Gonadotropin-releasing hormone agonists in the treatment of prostate cancer, Endocr. Rev. 26 (2005) 361-379
|
T. Meyer, M. E. Caplin, D. H. Palmer, et al, A phase Ib/IIa trial to evaluate the CCK2 receptor antagonist Z-360 in combination with gemcitabine in patients with advanced pancreatic cancer, Eur. J. Cancer 46 (2010) 526-533
|
U S Food and Drug Administration, https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm, (accessed Aug 10, 2018)
|
Y. Xiang, X. Yao, K. Chen, et al, The G-protein coupled chemoattractant receptor FPR2 promotes malignant phenotype of human colon cancer cells, Am. J. Cancer Res. 6 (2016) 2599-2610
|
L. D. Su, J. M. Peng, Y. B. Ge, Formyl peptide receptor 2 mediated chemotherapeutics drug resistance in colon cancer cells, Eur. Rev. Med. Pharmacol. Sci. 22 (2018) 95-100
|
H. M. Schuller, Regulatory role of G protein-coupled receptors in pancreatic cancer development and progression, Curr. Med. Chem. (2017)
|
L. Chow, L. Rezmann, K. Imamura, et al, Functional angiotensin II type 2 receptors inhibit growth factor signaling in LNCaP and PC3 prostate cancer cell lines, Prostate 68 (2008) 651-660
|
C. Zhou, X. Dai, Y. Chen, et al, G protein-coupled receptor GPR160 is associated with apoptosis and cell cycle arrest of prostate cancer cells, Oncotarget 7 (2016) 12823-12839
|
D. Maussang, A. Mujic-Delic, F. J. Descamps, et al, Llama-derived single variable domains (nanobodies) directed against chemokine receptor CXCR7 reduce head and neck cancer cell growth in vivo, J. Biol. Chem. 288 (2013) 29562-29572
|
M. Yang, W. W. Zhong, N. Srivastava, et al, G protein-coupled lysophosphatidic acid receptors stimulate proliferation of colon cancer cells through the {beta}-catenin pathway, Proc. Natl. Acad. Sci. U S A 102 (2005) 6027-6032
|
R. L. Siegel, K. D. Miller, A. Jemal, Cancer statistics, 2016, CA Cancer J. Clin. 66 (2016) 7-30
|
J. Wang, J. Weng, Y. Cai, et al, The prostate-specific G-protein coupled receptors PSGR and PSGR2 are prostate cancer biomarkers that are complementary to alpha-methylacyl-CoA racemase, Prostate 66 (2006) 847-857
|
E. M. Neuhaus, W. Zhang, L. Gelis, et al, Activation of an olfactory receptor inhibits proliferation of prostate cancer cells, J. Biol. Chem. 284 (2009) 16218-16225
|
M. Liu, Y. Y. Zhao, F. Yang, et al, Evidence for a role of GPRC6A in prostate cancer metastasis based on case-control and in vitro analyses, Eur. Rev. Med. Pharmacol. Sci. 20 (2016) 2235-2248
|
R. Ye, M. Pi, J. V. Cox, et al, CRISPR/Cas9 targeting of GPRC6A suppresses prostate cancer tumorigenesis in a human xenograft model, J. Exp. Clin. Cancer Res. 36 (2017) 90
|
S. Fung, T. Forte, R. Rahal, et al, Provincial rates and time trends in pancreatic cancer outcomes, Curr. Oncol. 20 (2013) 279-281
|
K. Kisfalvi, G. Eibl, J. Sinnett-Smith, et al, Metformin disrupts crosstalk between G protein-coupled receptor and insulin receptor signaling systems and inhibits pancreatic cancer growth, Cancer Res. 69 (2009) 6539-6545
|
J. P. Smith, L. K. Fonkoua, T. W. Moody, The Role of Gastrin and CCK Receptors in Pancreatic Cancer and other Malignancies, Int. J. Biol. Sci. 12 (2016) 283-291
|
Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015, Lancet 388 (2016) 1545-1602
|
H. Sic, H. Kraus, J. Madl, et al, Sphingosine-1-phosphate receptors control B-cell migration through signaling components associated with primary immunodeficiencies, chronic lymphocytic leukemia, and multiple sclerosis, J. Allergy Clin. Immunol. 134 (2014) 420-428
|
G. Runarsson, A. Liu, Y. Mahshid, et al, Leukotriene B4 plays a pivotal role in CD40-dependent activation of chronic B lymphocytic leukemia cells, Blood 105 (2005) 1274-1279
|
S. Saada, P. Marget, A. L. Fauchais, et al, Differential expression of neurotensin and specific receptors, NTSR1 and NTSR2, in normal and malignant human B lymphocytes, J. Immunol. 189 (2012) 5293-5303
|
T. Kamp, B. Liebl, E. Haen, et al, Defects of beta 2-adrenergic signal transduction in chronic lymphocytic leukaemia: relationship to disease progression, Eur. J. Clin. Invest. 27 (1997) 121-127
|
M. Mamani-Matsuda, D. Moynet, M. Molimard, et al, Long-acting beta2-adrenergic formoterol and salmeterol induce the apoptosis of B-chronic lymphocytic leukaemia cells, Br. J. Haematol. 124 (2004) 141-150
|
S. Decker, J. Finter, A. J. Forde, et al, PIM kinases are essential for chronic lymphocytic leukemia cell survival (PIM2/3) and CXCR4-mediated microenvironmental interactions (PIM1), Mol. Cancer Ther. 13 (2014) 1231-1245
|
B. Stamatopoulos, N. Meuleman, C. De Bruyn, et al, The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) induces apoptosis, downregulates the CXCR4 chemokine receptor and impairs migration of chronic lymphocytic leukemia cells, Haematol. Hematol. J. 95 (2010) 1136-1143
|
M. Buchner, P. Brantner, N. Stickel, et al, The microenvironment differentially impairs passive and active immunotherapy in chronic lymphocytic leukaemia - CXCR4 antagonists as potential adjuvants for monoclonal antibodies, Br. J. Haematol. 151 (2010) 167-178
|
M. Burger, T. Hartmann, M. Krome, et al, Small peptide inhibitors of the CXCR4 chemokine receptor (CD184) antagonize the activation, migration, and antiapoptotic responses of CXCL12 in chronic lymphocytic leukemia B cells, Blood 106 (2005) 1824-1830
|
M. Niedermeier, B. T. Hennessy, Z. A. Knight, et al, Isoform-selective phosphoinositide 3′-kinase inhibitors inhibit CXCR4 signaling and overcome stromal cell-mediated drug resistance in chronic lymphocytic leukemia: a novel therapeutic approach, Blood 113 (2009) 5549-5557
|
L. Patrussi, N. Capitani, V. Martini, et al, Enhanced Chemokine Receptor Recycling and Impaired S1P1 Expression Promote Leukemic Cell Infiltration of Lymph Nodes in Chronic Lymphocytic Leukemia, Cancer Res. 75 (2015) 4153-4163
|
O. Yoshie, R. Fujisawa, T. Nakayama, et al, Frequent expression of CCR4 in adult T-cell leukemia and human T-cell leukemia virus type 1-transformed T cells, Blood 99 (2002) 1505-1511
|
S. Makita, K. Tobinai, Mogamulizumab for the treatment of T-cell lymphoma, Expert. Opin. Biol. Ther. 17 (2017) 1145-1153
|
P. Boyle, B. Levin. World cancer report 2008. IARC Press, International Agency for Research on Cancer; 2008
|
A. McGuire, J. A. Brown, C. Malone, et al, Effects of age on the detection and management of breast cancer, Cancers 7 (2015) 908-929
|
G. P. Tuszynski, V. L. Rothman, X. Zheng, et al, G-protein coupled receptor-associated sorting protein 1 (GASP-1), a potential biomarker in breast cancer, Exp. Mol. Pathol. 91 (2011) 608-613
|
S. Hardy, G. G. St-Onge, E. Joly, et al, Oleate promotes the proliferation of breast cancer cells via the G protein-coupled receptor GPR40, J. Biol. Chem. 280 (2005) 13285-13291
|
J. Q. Chen, J. Russo, ERalpha-negative and triple negative breast cancer: molecular features and potential therapeutic approaches, Biochim. Biophys. Acta. 1796 (2009) 162-175
|
M. E. Feigin, B. Xue, M. C. Hammell, et al, G-protein-coupled receptor GPR161 is overexpressed in breast cancer and is a promoter of cell proliferation and invasion, PNAS 111 (2014) 4191-4196
|
Home-ClinicalTrials.gov, https://clinicaltrials.gov/ct2/home. Accessed on 8 August 2018
|
World Cancer Report 2014, Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015
|
Y. Qin, E. M. Verdegaal, M. Siderius, et al, Quantitative expression profiling of G-protein-coupled receptors (GPCRs) in metastatic melanoma: the constitutively active orphan GPCR GPR18 as novel drug target, Pigment Cell Melanoma Res. 24 (2011) 207-218
|
L. Xu, S. Begum, M. Barry, et al, GPR56 plays varying roles in endogenous cancer progression, Clin. Exp. Metastasis 27 (2010) 241-249
|
L. Yang, G. Chen, S. Mohanty, et al, GPR56 Regulates VEGF production and angiogenesis during melanoma progression, Cancer Res. 71 (2011) 5558-5568
|
Z. Jin, R. Luo, X. Piao, GPR56 and its related diseases, Prog. Mol. Biol. Transl. Sci. 89 (2009) 1-13
|
E. Perez-Gomez, C. Andradas, J. M. Flores, et al, The orphan receptor GPR55 drives skin carcinogenesis and is upregulated in human squamous cell carcinomas, Oncogene 32 (2013) 2534
|
M. T. Bastiaens, J. A. ter Huurne, C. Kielich, et al, Melanocortin-1 receptor gene variants determine the risk of nonmelanoma skin cancer independently of fair skin and red hair, Am. J. Hum. Genet. 68 (2001) 884-894
|
D. L. Duffy, N. F. Box, W. Chen, et al, Interactive effects of MC1R and OCA2 on melanoma risk phenotypes, Hum. Mol. Genet. 13 (2004) 447-461
|
K. Loser, T. Brzoska, V. Oji, et al, The neuropeptide alpha-melanocyte-stimulating hormone is critically involved in the development of cytotoxic CD8+ T cells in mice and humans, PLOS ONE 5 (2010) e8958
|
T. H. Nasti, L. Timares, MC1R, eumelanin and pheomelanin: their role in determining the susceptibility to skin cancer, Photochem. Photobiol. 91 (2015) 188-200
|