| Citation: | Chen Fu, Qiuchen Chen. The future of pharmaceuticals: Artificial intelligence in drug discovery and development[J]. Journal of Pharmaceutical Analysis, 2025, 15(8): 101248. doi: 10.1016/j.jpha.2025.101248 |
| [1] |
G.E. Gignac, E.T. Szodorai, Defining intelligence: Bridging the gap between human and artificial perspectives, Intelligence 104(2024), 101832.
|
| [2] |
T.P. Theodore Armand, K.A. Nfor, J.I. Kim, et al., Applications of artificial intelligence, machine learning, and deep learning in nutrition: A systematic review, Nutrients 16(2024), 1073.
|
| [3] |
K. Sutiene, P. Schwendner, C. Sipos, et al., Enhancing portfolio management using artificial intelligence: Literature review, Front. Artif. Intell. 7(2024), 1371502.
|
| [4] |
H. Ding, J. Tian, W. Yu, et al., The application of artificial intelligence and big data in the food industry, Foods 12(2023), 4511.
|
| [5] |
A. Sierpe, R.W. Yen, G. Stevens, et al., Agenda-setting in the clinical encounter: A systematic review protocol, PLoS One 19(2024), e0312613.
|
| [6] |
D. Meng, S. Zhang, Y. Huang, et al., Application of AI in biological age prediction, Curr. Opin. Struct. Biol. 85(2024), 102777.
|
| [7] |
M.T.R. Hamid, N.A. Mumin, S.A. Hamid, et al., Application of artificial intelligence (AI) system in opportunistic screening and diagnostic population in a middle-income nation, Curr. Med. Imaging 20(2024), e15734056280191.
|
| [8] |
J. Czech, M. Willig, A. Beyer, et al., Learning to play the chess variant crazyhouse above world champion level with deep neural networks and human data, Front. Artif. Intell. 3(2020), 24.
|
| [9] |
R.F. Service, AI tools set off an explosion of designer proteins, Science 386(2024) 260e261.
|
| [10] |
E. Callaway, Chemistry Nobel goes to developers of AlphaFold AI that predicts protein structures, Nature 634(2024) 525e526.
|
| [11] |
X. Zou, W. He, Y. Huang, et al., AI-driven diagnostic assistance in medical inquiry: Reinforcement learning algorithm development and validation, J. Med. Internet Res. 26(2024), e54616.
|
| [12] |
S. Pilehvari, Y. Morgan, W. Peng, An analytical review on the use of artificial intelligence and machine learning in diagnosis, prediction, and risk factor analysis of multiple sclerosis, Mult. Scler. Relat. Disord. 89(2024), 105761.
|
| [13] |
R.S. Huang, A. Benour, J. Kemppainen, et al., The future of AI clinicians: Assessing the modern standard of chatbots and their approach to diagnostic uncertainty, BMC Med. Educ. 24(2024), 1133.
|
| [14] |
L. Fu, S. Shi, J. Yi, et al., ADMETlab 3.0: An updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support, Nucleic Acids Res. 52(2024) W422eW431.
|
| [15] |
K. Chakravarty, V. Antontsev, Y. Bundey, et al., Driving success in personalized medicine through AI-enabled computational modeling, Drug Discov. Today 26(2021) 1459e1465.
|
| [16] |
M.P. Lourenço, J. Hostacs, C. Bellinger, et al., Reinforcement learning for in silico determination of adsorbate a Substrate structures, J. Comput. Chem. 45(2024) 1289e1302.
|
| [17] |
M. Heinzinger, B. Rost, Artificial intelligence learns protein prediction, Cold Spring Harb. Perspect. Biol. 16(2024), a041458.
|
| [18] |
Healx, Healx receives IND and orphan drug designation for fragile X clinical trial. https://healx.ai/ind-fragile-x-clinical-trial/. (Accessed 22 January 2025).
|
| [19] |
Healx, An AI first: Deep genomics platform reveals wilson's disease drug candidate. https://www.biospace.com/article/deep-genomics-ai-programreveals-first-drug-candidate-for-wilson-s-disease-/. (Accessed 22 January 2025).
|
| [20] |
A. Zhavoronkov, Y.A. Ivanenkov, A. Aliper, et al., Deep learning enables rapid identification of potent DDR1 kinase inhibitors, Nat. Biotechnol. 37(2019) 1038e1040.
|
| [21] |
B. Thompson, N. Petriac Howe, Alphafold 3.0: The AI protein predictor gets an upgrade, Nature. 2024. https://doi.org/10.1038/d41586-024-01385-x.
|
| [22] |
F. Ren, A. Aliper, J. Chen, et al., A small-molecule TNIK inhibitor targets fibrosis in preclinical and clinical models, Nat. Biotechnol. 43(2025) 63e75.
|
| [23] |
K.A. Papavassiliou, A.A. Sofianidi, V.A. Gogou, et al., The promise of artificial intelligence in reshaping anticancer drug development, Cells 13(2024), 1709.
|
| [24] |
ClinicalTrail.gov, Evaluate REC-4881 in patients with FAP (TUPELO). https:// clinicaltrials.gov/study/NCT05552755. (Accessed 22 July 2025).
|
| [25] |
ClinicalTrail.gov, Efficacy and safety of REC-2282 in patients with progressive neurofibromatosis type 2(NF2) mutated meningiomas (POPLAR-NF2). https://clinicaltrials.gov/study/NCT05130866. (Accessed 22 July 2025).
|
| [26] |
ClinicalTrail.gov, The symptomatic cerebral cavernous malformation trial of REC-994(SYCAMORE). https://clinicaltrials.gov/study/NCT05085561. (Accessed 22 July 2025).
|
| [27] |
ClinicalTrail.gov, Irofulven in AR-targeted and docetaxel-pretreated mCRPC patients with drug response predictor (DRP®). https://clinicaltrials.gov/ study/NCT03643107. (Accessed 22 July 2025).
|
| [28] |
J.N. Bodor, J. Dowell, J. Treat, et al., Phase II trial of LP-300 in combination with carboplatin and pemetrexed in never smoker patients with relapsed advanced primary adenocarcinoma of the lung after treatment with tyrosine kinase inhibitors, Clin. Lung Cancer. 2025. https://doi.org/10.1016/ j.cllc.2025.05.013.
|
| [29] |
ClinicalTrail.gov, Study of LP-184 in patients with advanced solid tumors. https://www.clinicaltrials.gov/study/NCT05933265. (Accessed 22 January 2025).
|
| [30] |
ClinicalTrail.gov, RLY-1971 in subjects with advanced or metastatic solid tumors. https://clinicaltrials.gov/study/NCT04252339. (Accessed 22 January 2025).
|
| [31] |
H. Schonherr, P. Ayaz, A.M. Taylor, et al., Discovery of lirafugratinib (RLY- € 4008), a highly selective irreversible small-molecule inhibitor of FGFR2, Proc. Natl. Acad. Sci. U S A 121(2024), e2317756121.
|
| [32] |
A. Varkaris, E. Pazolli, H. Gunaydin, et al., Discovery and clinical proof-ofconcept of RLY-2608, a first-in-class mutant-selective allosteric PI3Ka inhibitor that decouples antitumor activity from hyperinsulinemia, Cancer Discov. 14(2024) 240e257.
|
| [33] |
ClinicalTrail.gov, A study of AC682 in chinese patients with ER+/HER2a locally advanced or metastatic breast cancer. https://www.clinicaltrials.gov/ study/NCT05489679. (Accessed 22 January 2025).
|
| [34] |
ClinicalTrail.gov, A study of AC176 for the treatment of metastatic castration resistant prostate cancer. https://www.clinicaltrials.gov/study/ NCT05241613. (Accessed 22 July 2025).
|
| [35] |
ClinicalTrail.gov, A study of BPM31510 with vitamin K1 in subjects with newly diagnosed glioblastoma (GB). https://clinicaltrials.gov/study/ NCT04752813. (Accessed 22 July 2025).
|
| [36] |
M.E. Lacouture, H. Dion, S. Ravipaty, et al., A phase I safety study of topical calcitriol (BPM31543) for the prevention of chemotherapy-induced alopecia, Breast Cancer Res. Treat. 186(2021) 107e114.
|
| [37] |
ClinicalTrail.gov, A phase 2a study of LAM-001 for the treatment of pulmonary hypertension. https://ctv.veeva.com/study/a-phase-2a-study-of-lam- 001-for-the-treatment-of-ph. (Accessed 22 January 2025).
|
| [38] |
ClinicalTrail.gov, Study of safety, tolerability, and biological activity of LAM- 002A in C9ORF72-associated amyotrophic lateral sclerosis. https://classic. clinicaltrials.gov/ct2/show/NCT05163886. (Accessed 22 January 2025).
|
| [39] |
ClinicalTrail.gov, A first-in-human PoC study with BEN2293 in patients with mild to moderate atopic dermatitis. https://classic.clinicaltrials.gov/ct2/ show/NCT04737304. (Accessed 22 January 2025).
|
| [40] |
J.D. Jones, L. Rajachandran, F. Yocca, et al., Sublingual dexmedetomidine (BXCL501) reduces opioid withdrawal symptoms: Findings from a multi-site, phase 1b/2, randomized, double-blind, placebo-controlled trial, Am. J. Drug Alcohol Abuse 49(2023) 109e122.
|
| [41] |
ClinicalTrail.gov, A trial of BXCL701 and pembrolizumab in patients with mCRPC either small cell neuroendocrine prostate cancer or adenocarcinoma phenotype. https://clinicaltrials.gov/study/NCT03910660. (Accessed 22 January 2025).
|
| [42] |
ClinicalTrail.gov, 3-part study to assess safety, tolerability, pharmacokinetics and pharmacodynamics of EXS21546. https://classic.clinicaltrials.gov/ct2/ show/NCT04727138. (Accessed 22 January 2025).
|
| [43] |
ClinicalTrail.gov, A single arm trial evaluating the efficacy and safety of EVX- 01 in combination with pembrolizumab in adults with unresectable or metastatic melanoma. https://classic.clinicaltrials.gov/ct2/show/ NCT05309421. (Accessed 22 January 2025).
|
| [44] |
ClinicalTrail.gov, Study of adjuvant immunotherapy with EVX-02 and antiPD-1. https://classic.clinicaltrials.gov/ct2/show/NCT04455503. (Accessed 22 January 2025).
|
| [45] |
ClinicalTrail.gov, Evaluation of the safety, tolerability, pharmacokinetics, and pharmacodynamics of PHI 101 for the treatment of AML. https://classic. clinicaltrials.gov/ct2/show/NCT04842370. (Accessed 22 January 2025).
|
| [46] |
S.J. Park, S.J. Chang, D.H. Suh, et al., A phase IA dose-escalation study of PHI- 101, a new checkpoint kinase 2 inhibitor, for platinum-resistant recurrent ovarian cancer, BMC Cancer 22(2022), 28.
|
| [47] |
ClinicalTrail.gov, Study of SOM0226 in familial amyloid polyneuropathy. https://classic.clinicaltrials.gov/ct2/show/NCT02191826. (Accessed 22 January 2025).
|
| [48] |
ClinicalTrail.gov, Efficacy and safety on SOM3355 in Huntington's disease chorea. https://classic.clinicaltrials.gov/ct2/show/NCT05475483. (Accessed 22 January 2025).
|
| [49] |
Synapse, SOM0061. https://synapse.patsnap.com/drug/eab2e3da54714015a b730d54d371d6df. (Accessed 22 January 2025).
|
| [50] |
M. Guerrero, M. Urbano, E.K. Kim, et al., Design and synthesis of a novel and selective kappa opioid receptor (KOR) antagonist (BTRX-335140), J. Med. Chem. 62(2019) 1761e1780.
|
| [51] |
ClinicalTrail.gov, Safety and tolerability of FMT capsules in healthy volunteers. https://classic.clinicaltrials.gov/ct2/show/NCT05352269. (Accessed 22 January 2025).
|
| [52] |
M.S. Lee, A.R. Parikh, D.R. Spigel, et al., Preliminary results from ERAS-007 plus encorafenib and cetuximab (EC) in patients (pts) with metastatic BRAF V600E mutated colorectal cancer (CRC) in HERKULES-3 study: A phase 1b/2 study of agents targeting the mitogen-activated protein kinase (MAPK) pathway in pts with advanced gastrointestinal malignancies (GI cancers), J. Clin. Oncol. 41(2023), 3557.
|
| [53] |
M. McKean, E. Rosen, M. Barve, et al., Abstract CT184: Preliminary dose escalation results of ERAS-601 in combination with cetuximab in FLAGSHP- 1: A phase I study of ERAS-601, a potent and selective SHP2 inhibitor, in patients with previously treated advanced or metastatic solid tumors, Cancer Res. 83(2023), CT184.
|
| [54] |
ClinicalTrail.gov, A study to evaluate the efficacy, safety, and tolerability of NDI-034858 in participants with active psoriatic arthritis. https://classic. clinicaltrials.gov/ct2/show/NCT05153148. (Accessed 22 January 2025).
|
| [55] |
ClinicalTrail.gov, A study of NDI 1150-101 in patients with solid tumors. https://classic.clinicaltrials.gov/ct2/show/NCT05128487. (Accessed 22 January 2025).
|
| [56] |
ClinicalTrail.gov, Efficacy and safety of oral BT-11 in moderate to severe Crohn's disease. https://www.clinicaltrials.gov/study/NCT03870334. (Accessed 22 January 2025).
|
| [57] |
Safety, tolerability, and pharmacokinetics of oral NX-13 in active ulcerative colitis. https://ctv.veeva.com/study/safety-tolerability-and-pharmacokineticsof-oral-nx-13-in-active-ulcerative-colitis. (Accessed 22 January 2025).
|
| [58] |
ClinicalTrail.gov, Study of potential CYP3A4 induction by INDV-2000 in healthy adults. https://www.clinicaltrials.gov/study/NCT05694533. (Accessed 22 January 2025).
|
| [59] |
ClinicalTrail.gov, A first in human study to evaluate the safety, pharmacokinetics, and pharmacodynamics effects of OC514. https://www.clinicaltrials. gov/study/NCT05264038. (Accessed 22 January 2025).
|
| [60] |
ClinicalTrail.gov, A study to assess the efficacy and safety of PXT3003 in Charcot-Marie-Tooth type 1A. https://www.clinicaltrials.gov/study/ NCT05092841. (Accessed 22 January 2025).
|
| [61] |
ClinicalTrail.gov, Investigation of sulindac (HLX-0201) and gaboxadol (HLX- 0206) in male fragile X syndrome patients aged 13-40(IMPACT-FXS). https:// www.clinicaltrials.gov/study/NCT04823052. (Accessed 22 January 2025).
|
| [62] |
ClinicalTrail.gov, LY3819253(LY-CoV555) for inpatients with COVID-19(An ACTIV-3/TICO treatment trial). https://www.clinicaltrials.gov/study/ NCT05780268. (Accessed 22 January 2025).
|
| [63] |
ClinicalTrail.gov, A phase 1, evaluate the safety, tolerability, and pharmacokinetics of INS018_055 in healthy subjects. https://www.clinicaltrials.gov/ study/NCT05154240. (Accessed 22 January 2025).
|
| [64] |
ClinicalTrail.gov, Study of SGR-1505 in mature B-cell neoplasms. https:// clinicaltrials.gov/study/NCT05544019. (Accessed 27 July 2025).
|
| [65] |
N. Antonissen, O. Tryfonos, I.B. Houben, et al., Artificial intelligence in radiology: 173 commercially available products and their scientific evidence, Eur. Radiol. 2025. https://doi.org/10.1007/s00330-025-11830-8.
|
| [66] |
A.R. Javed, H.U. Khan, M.K.B. Alomari, et al., Toward explainable AIempowered cognitive health assessment, Front. Public Health 11(2023), 1024195.
|
| [67] |
J. Jumper, R. Evans, A. Pritzel, et al., Applying and improving AlphaFold at CASP14, Proteins 89(2021) 1711e1721.
|
| [68] |
K.H. Nam, Evaluation of AlphaFold3 for the fatty acids docking to human fatty acid-binding proteins, J. Mol. Graph. Model. 133(2024), 108872.
|
| [69] |
R. Araújo, L. Ramalhete, A. Viegas, et al., Simplifying data analysis in biomedical research: An automated, user-friendly tool, Methods Protoc. 7(2024), 36.
|
| [70] |
S. Li, L. Peng, L. Chen, et al., Discovery of highly bioactive peptides through hierarchical structural information and molecular dynamics simulations, J. Chem. Inf. Model. 64(2024) 8164e8175.
|
| [71] |
N. Almusallam, F. Ali, A. Masmoudi, et al., An omics-driven computational model for angiogenic protein prediction: Advancing therapeutic strategies with Ens-deep-AGP, Int. J. Biol. Macromol. 282(2024), 136475.
|
| [72] |
P. Lin, H. Li, S. Huang, Deep learning in modeling protein complex structures: From contact prediction to end-to-end approaches, Curr. Opin. Struct. Biol. 85(2024), 102789.
|
| [73] |
Z. Fralish, D. Reker, Taking a deep dive with active learning for drug discovery, Nat. Comput. Sci. 4(2024) 727e728.
|
| [74] |
K. Kawanishi, M. Baba, R. Kobayashi, et al., A novel deep learning approach for analyzing glomerular basement membrane lesions in a mouse model of X-linked alport syndrome, Am. J. Pathol. 195(2025) 143e154.
|
| [75] |
G. Huang, Y. Li, S. Jameel, et al., From explainable to interpretable deep learning for natural language processing in healthcare: How far from reality? Comput. Struct. Biotechnol. J. 24(2024) 362e373.
|
| [76] |
C. Shi, T. Gao, W. Lyu, et al., Deep-learning-driven discovery of SN3-1, a potent NLRP3 inhibitor with therapeutic potential for inflammatory diseases, J. Med. Chem. 67(2024) 17833e17854.
|
| [77] |
Y. Guttman, Z. Kerem, Dietary inhibitors of CYP3A4 are revealed using virtual screening by using a new deep-learning classifier, J. Agric. Food Chem. 70(2022) 2752e2761.
|
| [78] |
L. Peng, R. Hu, F. Kong, et al., Reverse graph learning for graph neural network, IEEE Trans. Neural Netw. Learn. Syst. 35(2024) 4530e4541.
|
| [79] |
J. Li, Q. Sun, F. Zhang, et al., Meta-structure-based graph attention networks, Neural Netw. 171(2024) 362e373.
|
| [80] |
F. Bai, S. Li, H. Li, AI enhances drug discovery and development, Natl. Sci. Rev. 11(2023), nwad303.
|
| [81] |
L. Belenguer, AI bias: Exploring discriminatory algorithmic decision-making models and the application of possible machine-centric solutions adapted from the pharmaceutical industry, AI Ethics 2(2022) 771e787.
|
| [82] |
D.R. Serrano, F.C. Luciano, B.J. Anaya, et al., Artificial intelligence (AI) applications in drug discovery and drug delivery: Revolutionizing personalized medicine, Pharmaceutics 16(2024), 1328.
|
| [83] |
S. Bharadwaj, K. Deepika, A. Kumar, et al., Exploring the artificial intelligence and its impact in pharmaceutical sciences: Insights toward the horizons where technology meets tradition, Chem. Biol. Drug Des. 104(2024), e14639.
|
| [84] |
T. James, H. Hennig, Knowledge graphs and their applications in drug discovery, Methods Mol. Biol. 2716(2024) 203e221.
|
| [85] |
M.M.L. Araújo, M.L.O. Andrade, G.D. Oliveira, et al., From nature to drug: Overview and CADD approach of anacardic acid to propose their biological potential, Curr. Top. Med. Chem. 2024. https://doi.org/10.2174/ 0115680266319575240905164313.
|
| [86] |
M.G.R. Priya, J. Manisha, L.P.M. Lazar, et al., Computer-aided drug discovery approaches in the identification of anticancer drugs from natural products: A review, Curr. Comput. Aided Drug Des. 21(2025) 1e14.
|
| [87] |
W. Xu, Current status of computational approaches for small molecule drug discovery, J. Med. Chem. 67(2024) 18633e18636.
|
| [88] |
P. Wall, T. Ideker, Representing mutations for predicting cancer drug response, Bioinformatics 40(2024) i160ei168.
|
| [89] |
D. Takaya, Computer-aided drug design using the fragment molecular orbital method: Current status and future applications for SBDD, Chem. Pharm. Bull. 72(2024) 781e786.
|
| [90] |
D.R. Martin, A. Ajmal, M. Meyer, et al., In silico identification of phytoconstituents from Capparis sepiaria as interleukin-1 inhibitors for rheumatoid arthritis: Molecular docking, ADMET profiling, and molecular dynamics simulation, In Silico Pharmacol. 13(2025), 106.
|
| [91] |
I. Fatima, A. Rehman, Y. Ding, et al., Breakthroughs in AI and multi-omics for cancer drug discovery: A review, Eur. J. Med. Chem. 280(2024), 116925.
|
| [92] |
R. Sharma, E. Saghapour, J.Y. Chen, An NLP-based technique to extract meaningful features from drug SMILES, iScience 27(2024), 109127.
|
| [93] |
Q. Zhang, D. Mao, Y. Tu, et al., A new fingerprint and graph hybrid neural network for predicting molecular properties, J. Chem. Inf. Model. 64(2024) 5853e5866.
|
| [94] |
G. Pinto, M. Gelzo, G. Cernera, et al., Molecular fingerprint by omics-based approaches in saliva from patients affected by SARS-CoV-2 infection, J. Mass Spectrom. 59(2024), e5082.
|
| [95] |
J. Liao, H. Chen, L. Wei, et al., GSAML-DTA: An interpretable drug-target binding affinity prediction model based on graph neural networks with selfattention mechanism and mutual information, Comput. Biol. Med. 150(2022), 106145.
|
| [96] |
Z. Zhu, Z. Yao, X. Zheng, et al., Drug-target affinity prediction method based on multi-scale information interaction and graph optimization, Comput. Biol. Med. 167(2023), 107621.
|
| [97] |
Z. Zhu, X. Zheng, G. Qi, et al., Drugetarget binding affinity prediction model based on multi-scale diffusion and interactive learning, Expert Syst. Appl. 255(2024), 124647.
|
| [98] |
Z. Zhu, Z. Yao, G. Qi, et al., Associative learning mechanism for drug-target interaction prediction, CAAI Trans. Intell. Technol. 8(2023) 1558e1577.
|
| [99] |
R.R. Syahdi, S. Jasial, I. Maeda, et al., Bridging structure- and ligand-based virtual screening through fragmented interaction fingerprint, ACS Omega 9(2024) 38957e38969.
|
| [100] |
Z. Zhang, Y. Bian, A. Xie, et al., Can pretrained models really learn better molecular representations for AI-aided drug discovery? J. Chem. Inf. Model. 64(2024) 2921e2930.
|
| [101] |
Y. Wu, M. Li, J. Shen, et al., A consensual machine-learning-assisted QSAR model for effective bioactivity prediction of xanthine oxidase inhibitors using molecular fingerprints, Mol. Divers. 28(2024) 2033e2048.
|
| [102] |
F. Sanchez Rodríguez, A.J. Simpkin, G. Chojnowski, et al., Using deep-learning a predictions reveals a large number of register errors in PDB depositions, IUCrJ 11(2024) 938e950.
|
| [103] |
D. Torodii, J.B. Holmes, P. Moutzouri, et al., Crystal structure validation of verinurad via proton-detected ultra-fast MAS NMR and machine learning, Faraday Discuss. 255(2025) 143e158.
|
| [104] |
P. Mohanraj, V. Raman, S. Ramanathan, Deep learning for Parkinson’s disease diagnosis: A graph neural network (GNN) based classification approach with graph wavelet transform (GWT) using protein-peptide datasets, Diagnostics (Basel) 14(2024), 2181.
|
| [105] |
P. Duan, C. Zhou, Y. Liu, Dynamic graph representation learning via couplingprocess model, IEEE Trans. Neural Netw. Learn. Syst. 35(2024) 12383e12395.
|
| [106] |
Z. Fan, L. Chen, X. Wu, et al., Enhancing predictions of drug solubility through multidimensional structural characterization exploitation, IEEE J. Biomed. Health Inform. 29(2025) 1828e1837.
|
| [107] |
X. Gu, J. Liu, Y. Yu, et al., MFD-GDrug: Multimodal feature fusion-based deep learning for GPCR-drug interaction prediction, Methods 223(2024) 75e82.
|
| [108] |
B. Chen, Z. Pan, M. Mou, et al., Is fragment-based graph a better graph-based molecular representation for drug design? A comparison study of graphbased models, Comput. Biol. Med. 169(2024), 107811.
|
| [109] |
Y. Yuan, Z. Chen, T. Feng, et al., Tripartite interaction representation algorithm for crystal graph neural networks, Sci. Rep. 14(2024), 24881.
|
| [110] |
F. Wang, C.A. Barrero, Multi-omics analysis identified drug repurposing targets for chronic obstructive pulmonary disease, Int. J. Mol. Sci. 25(2024), 11106.
|
| [111] |
S.J. Nicholls, A.J. Nelson, CETP inhibitors: Should we continue to pursue this pathway? Curr. Atheroscler. Rep. 24(2022) 915e923.
|
| [112] |
M. Fantacuzzi, R. Paciotti, M. Agamennone, A comprehensive computational insight into the PD-L1 binding to PD-1 and small molecules, Pharmaceuticals (Basel) 17(2024), 316.
|
| [113] |
D. Gohel, P. Zhang, A.K. Gupta, et al., Sildenafil as a candidate drug for Alzheimer’s disease: Real-world patient data observation and mechanistic observations from patient-induced pluripotent stem cell-derived neurons, J. Alzheimers. Dis. 98(2024) 643e657.
|
| [114] |
Y. Shi, L. Bao, Y. Li, et al., Multi-omics combined to investigate potential druggable therapeutic targets for stroke: A systematic Mendelian randomization study and transcriptome verification, J. Affect. Disord. 366(2024) 196e209.
|
| [115] |
A.J. Clark, J.W. Lillard Jr., A comprehensive review of bioinformatics tools for genomic biomarker discovery driving precision oncology, Genes (Basel) 15(2024), 1036.
|
| [116] |
A. Sau, L. Pastika, E. Sieliwonczyk, et al., Artificial intelligence-enabled electrocardiogram for mortality and cardiovascular risk estimation: A model development and validation study, Lancet Digit. Health 6(2024) e791ee802.
|
| [117] |
G.A. Logsdon, P. Ebert, P.A. Audano, et al., Complex genetic variation in nearly complete human genomes, Nature. 2025. https://doi.org/10.1038/s41586- 025-09140-6.
|
| [118] |
I. Jurisica, Explainable biology for improved therapies in precision medicine: AI is not enough, Best Pract. Res. Clin. Rheumatol. 38(2024), 102006.
|
| [119] |
BioSpace, BERG announces presentation of mutliple interrogative biology platform® and outputs from multiple collaborations at AACR. https://www. biospace.com/article/releases/berg-announces-presentation-of-mutlipleinterrogative-biology-platform-and-outputs-from-multiple-collaborationsat-aacr/. (Accessed 22 January 2025).
|
| [120] |
D. Watanabe, M. Hiroshima, M. Yasui, et al., Single molecule tracking based drug screening, Nat. Commun. 15(2024), 8975.
|
| [121] |
C. Segú-Verges, L. Artigas, M. Coma, et al., Arti a ficial intelligence assessment of the potential of tocilizumab along with corticosteroids therapy for the management of COVID-19 evoked acute respiratory distress syndrome, PLoS One 18(2023), e0280677.
|
| [122] |
G. Aghakhanyan, A. Galgani, A. Vergallo, et al., Brain metabolic correlates of Locus Coeruleus degeneration in Alzheimer’s disease: A multimodal neuroimaging study, Neurobiol. Aging 122(2023) 12e21.
|
| [123] |
G. Yu, Q. Ye, T. Ruan, Enhancing error detection on medical knowledge graphs via intrinsic label, Bioengineering (Basel) 11(2024), 225.
|
| [124] |
L. Wang, R. Ding, Y. Zhai, et al., Giant Panda identification, IEEE Trans. Image Process. 30(2021) 2837e2849.
|
| [125] |
K. Sujaritwanid, B. Suzuki, E.Y. Suzuki, Comparison of one versus two maxillary molars distalization with iPanda: A finite element analysis, Prog. Orthod. 22(2021), 12.
|
| [126] |
I.V. Ozerov, K.V. Lezhnina, E. Izumchenko, et al., In silico Pathway Activation Network Decomposition Analysis (iPANDA) as a method for biomarker development, Nat. Commun. 7(2016), 13427.
|
| [127] |
E. Amiri Souri, R. Laddach, S.N. Karagiannis, et al., Novel drug-target interactions via link prediction and network embedding, BMC Bioinformatics 23(2022), 121.
|
| [128] |
F. Olotu, E. Medina-Carmona, A. Serrano-Sanchez, et al., Structure-based discovery and in vitro validation of inhibitors of chloride intracellular channel 4 protein, Comput. Struct. Biotechnol. J. 21(2023) 688e701.
|
| [129] |
A. Gaurav, N. Agrawal, M. Al-Nema, et al., Computational approaches in the discovery and development of therapeutic and prophylactic agents for viral diseases, Curr. Top. Med. Chem. 22(2022) 2190e2206.
|
| [130] |
X. Wang, Y. Shen, S. Wang, et al., PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database, Nucleic Acids Res. 45(2017) W356eW360.
|
| [131] |
M. Sobhy, A. Eletriby, H. Ragy, et al., ACE inhibitors and angiotensin receptor blockers for the primary and secondary prevention of cardiovascular outcomes: Recommendations from the 2024 Egyptian cardiology expert consensus in collaboration with the CVREP foundation, Cardiol. Ther. 13(2024) 707e736.
|
| [132] |
M. Li, R.A. Soo, Can therapeutic drug monitoring of lorlatinib help us design the right CROWN? Lung Cancer 196(2024), 107965.
|
| [133] |
K.R. Acharya, K.S. Gregory, E.D. Sturrock, Advances in the structural basis for angiotensin-1 converting enzyme (ACE) inhibitors, Biosci. Rep. 44(2024), BSR20240130.
|
| [134] |
J. Wang, D. Beyer, C. Vaccarin, et al., Development of radiofluorinated MLN- 4760 derivatives for PET imaging of the SARS-CoV-2 entry receptor ACE2, Eur. J. Nucl. Med. Mol. Imaging 52(2024) 9e21.
|
| [135] |
D.A. Belinskaia, N.N. Shestakova, K.V. Samodurova, et al., Computational study of molecular mechanism for the involvement of human serum albumin in the renin-angiotensin-aldosterone system, Int. J. Mol. Sci. 25(2024), 10260.
|
| [136] |
L. Chen, Q. Li, K.F.A. Nasif, et al., AI-driven deep learning techniques in protein structure prediction, Int. J. Mol. Sci. 25(2024), 8426.
|
| [137] |
R. Roy, H.M. Al-Hashimi, AlphaFold3 takes a step toward decoding molecular behavior and biological computation, Nat. Struct.Mol. Biol.31(2024)997e1000.
|
| [138] |
AlphaFold3 a why did Nature publish it without its code? Nature 629(2024), 728.
|
| [139] |
D. Wu, R. Yin, G. Chen, et al., Structural characterization and AlphaFold modeling of human T cell receptor recognition of NRAS cancer neoantigens, Sci. Adv. 10(2024), eadq6150.
|
| [140] |
J. Wee, G.-W. Wei, Benchmarking AlphaFold3’s protein-protein complex accuracy and machine learning prediction reliability for binding free energy changes upon mutation, arXiv. 2024. https://doi.org/10.48550/ arXiv.2406.03979.
|
| [141] |
R.T. McDonnell, A.N. Henderson, A.H. Elcock, Structure prediction of large RNAs with AlphaFold3 highlights its capabilities and limitations, J. Mol. Biol. 436(2024), 168816.
|
| [142] |
K.M. Saravanan, J.F. Wan, L. Dai, et al., A deep learning based multi-model approach for predicting drug-like chemical compound’s toxicity, Methods 226(2024) 164e175.
|
| [143] |
D. Ang, C. Rakovski, H.S. Atamian, De novo drug design using transformerbased machine translation and reinforcement learning of an adaptive Monte Carlo tree search, Pharmaceuticals (Basel) 17(2024), 161.
|
| [144] |
C. Hasselgren, T.I. Oprea, Artificial intelligence for drug discovery: Are we there yet, Annu. Rev. Pharmacol. Toxicol. 64(2024) 527e550.
|
| [145] |
L. Isigkeit, T. Hormann, E. Schallmayer, et al., Automated design of multi- € target ligands by generative deep learning, Nat. Commun. 15(2024), 7946.
|
| [146] |
B.A. Wright, R. Sarpong, Molecular complexity as a driving force for the advancement of organic synthesis, Nat. Rev. Chem. 8(2024) 776e792.
|
| [147] |
O. Wiest, C. Bauer, P. Helquist, et al., Finding relevant retrosynthetic disconnections for stereocontrolled reactions, J. Chem. Inf. Model. 64(2024) 5796e5805.
|
| [148] |
E.C. Oelsner, Y. Sun, P.P. Balte, et al., Epidemiologic features of recovery from SARS-CoV-2 infection, JAMA Netw. Open 7(2024), e2417440.
|
| [149] |
S.C. Fragkouli, D. Solanki, L.J. Castro, et al., Synthetic data: How could it be used in infectious disease research? Future Microbiol. 19(2024) 1439e1444.
|
| [150] |
J. Chen, W. Li, P. Hou, et al., An appearance-semantic descriptor with coarseto-fine matching for robust VPR, Sensors (Basel) 24(2024), 2203.
|
| [151] |
E. Lopez-Ch a avez, A. Garcia-Quiroz, J.A.I. Díaz-G a ongora, et al., Effect of gra- a phene on the key electrical, optical, and magnetic properties of polymethylmethacrylate: A study based on molecular modeling, J. Mol. Model. 30(2024), 375.
|
| [152] |
M. Wang, Y. Liu, J. Yuan, et al., Inter-class and inter-domain semantic augmentation for domain generalization, IEEE Trans. Image Process. 33(2024) 1338e1347.
|
| [153] |
M.H.S. Segler, M. Preuss, M.P. Waller, Planning chemical syntheses with deep neural networks and symbolic AI, Nature 555(2018) 604e610.
|
| [154] |
L.F. Salas-Nunez, A. Barrera-Ocampo, P.A. Caicedo, et al., Machine learning to ~ predict enzyme-substrate interactions in elucidation of synthesis pathways: A review, Metabolites 14(2024), 154.
|
| [155] |
S.R. Krishnan, N. Bung, R. Srinivasan, et al., Target-specific novel molecules with their recipe: Incorporating synthesizability in the design process, J. Mol. Graph. Model. 129(2024), 108734.
|
| [156] |
L. Schoenmaker, O.J.M. Bequignon, W. Jespers, et al., UnCorrupt SMILES: A a novel approach to de novo design, J. Cheminf. 15(2023), 22.
|
| [157] |
U.V. Ucak, I. Ashyrmamatov, J. Lee, Reconstruction of lossless molecular representations from fingerprints, J. Cheminform. 15(2023), 26.
|
| [158] |
M. Kutsal, F. Ucar, N. Kati, Computational drug discovery on human immunodeficiency virus with a customized long short-term memory variational autoencoder deep-learning architecture, CPT Pharmacometrics Syst. Pharmacol. 13(2024) 308e316.
|
| [159] |
A.Y. Bande, S. Baday, Accelerating molecular docking using machine learning methods, Mol. Inform. 43(2024), e202300167.
|
| [160] |
F. Li, J. Li, J. Song, et al., Identification of a novel orthonairovirus from ticks and serological survey in animals near China-North Korea border, J. Med. Virol. 96(2024), e29567.
|
| [161] |
C. Herbst, S. Endres, R. Würz, et al., Assessment of fragment docking and scoring with the endothiapepsin model system, Arch. Pharm. 357(2024), 2400061.
|
| [162] |
M. Nehal, J. Khatoon, S. Akhtar, et al., Computational insights into inhibiting EphA2: Integrating structure-based virtual screening, docking, and molecular dynamics simulations for small molecule discovery, Cell. Mol. Biol. 70(2024) 16e31.
|
| [163] |
J. Meng, L. Zhang, Z. He, et al., Development of a machine learning-based target-specific scoring function for structure-based binding affinity prediction for human dihydroorotate dehydrogenase inhibitors, J. Comput. Chem. 46(2025), e27510.
|
| [164] |
I. Mohammadzadeh, B. Hajikarimloo, B. Niroomand, et al., Prediction of recurrence after surgery for pituitary adenoma using machine learningbased models: Systematic review and meta-analysis, BMC Endocr. Disord. 25(2025), 158.
|
| [165] |
C. Shen, X. Hu, J. Gao, et al., The impact of cross-docked poses on performance of machine learning classifier for protein-ligand binding pose prediction, J. Cheminform. 13(2021), 81.
|
| [166] |
Y. Zhang, M. Wang, E. Zhang, et al., Artificial intelligence in the screening, diagnosis, and management of aortic stenosis, Rev. Cardiovasc. Med. 25(2024), 31.
|
| [167] |
X. Zhang, C. Shen, H. Zhang, et al., Advancing ligand docking through deep learning: Challenges and prospects in virtual screening, Acc. Chem. Res. 57(2024) 1500e1509.
|
| [168] |
M. Junaid, B. Wang, W. Li, Data-augmented machine learning scoring functions for virtual screening of YTHDF1 m6A reader protein, Comput. Biol. Med. 183(2024), 109268.
|
| [169] |
L. Gantenbein, S.E. Cerminara, J.T. Maul, et al., Artificial intelligence-driven skin aging simulation as a novel skin cancer prevention, Dermatology 241(2025) 59e71.
|
| [170] |
B. Clarke, E. Holtkamp, H. Oztürk, et al., Integration of variant annotations € using deep set networks boosts rare variant association testing, Nat. Genet. 56(2024) 2271e2280. C. Fu and Q. Chen Journal of Pharmaceutical Analysis 15(2025) 101248
|
| [171] |
T. Hermans, L. Smets, K. Lemmens, et al., A multi-task and multi-channel convolutional neural network for semi-supervised neonatal artefact detection, J. Neural Eng. 20(2023), 026013.
|
| [172] |
Y. Wang, Y. Su, K. Zhao, et al., A deep learning drug screening framework for integrating local-global characteristics: A novel attempt for limited data, Heliyon 10(2024), e34244.
|
| [173] |
P. Mittal, D. Ghanghas, D. Sharma, et al., Thiazolidine-4-one analogues: Synthesis, in-silico molecular modeling, and in-vivo estimation for anticonvulsant potential, Cent. Nerv. Syst. Agents Med. Chem. 2024. https://doi.org/ 10.2174/0118715249322920241004113343.
|
| [174] |
N.F. de Sousa, G.D. Duarte, C.B. Moraes, et al., In silico and in vitro studies of terpenes from the Fabaceae family using the phenotypic screening model against the SARS-CoV-2 virus, Pharmaceutics 16(2024), 912.
|
| [175] |
P.V. Pogodin, E.G. Salina, V.V. Semenov, et al., Ligand-based virtual screening and biological evaluation of inhibitors of Mycobacterium tuberculosis H37Rv, SAR QSAR Environ. Res. 35(2024) 53e69.
|
| [176] |
K. Mkhayar, O. Daoui, R. Haloui, et al., Ligand-based design of novel quinoline derivatives as potential anticancer agents: An in-silico virtual screening approach, Molecules 29(2024), 426.
|
| [177] |
V. Kumar, K. Jangid, N. Kumar, et al., 3D-QSAR-based pharmacophore modelling of quinazoline derivatives for the identification of acetylcholinesterase inhibitors through virtual screening, molecular docking, molecular dynamics and DFT studies, J. Biomol. Struct. Dyn. 43(2025) 2631e2645.
|
| [178] |
K.A. Krishnan, S.G. Valavi, A. Joy, Identification of novel EGFR inhibitors for the targeted therapy of colorectal cancer using pharmacophore modelling, docking, molecular dynamic simulation and biological activity prediction, Anticancer Agents Med. Chem. 24(2024) 263e279.
|
| [179] |
A. Karampuri, S. Perugu, A breast cancer-specific combinational QSAR model development using machine learning and deep learning approaches, Front. Bioinform. 3(2024), 1328262.
|
| [180] |
F. Ghasemi, A. Fassihi, H. Perez-S a a anchez, et al., The role of different sampling methods in improving biological activity prediction using deep belief network, J. Comput. Chem. 38(2017) 195e203.
|
| [181] |
A.J. Minnich, K. McLoughlin, M. Tse, et al., AMPL: A data-driven modeling pipeline for drug discovery, J. Chem. Inf. Model. 60(2020) 1955e1968.
|
| [182] |
J.M. Stokes, K. Yang, K. Swanson, et al., A deep learning approach to antibiotic discovery, Cell 180(2020) 688e702.e13.
|
| [183] |
J. Oluiac, K. Nikolic, J. Vucicevic, et al., 3D-QSAR, virtual screening, docking and design of dual PI3K/mTOR inhibitors with enhanced antiproliferative activity, Comb. Chem. High Throughput Screen. 20(2017) 292e303.
|
| [184] |
K. Swanson, P. Walther, J. Leitz, et al., ADMET-AI: A machine learning ADMET platform for evaluation of large-scale chemical libraries, Bioinformatics 40(2024), btae416.
|
| [185] |
T.T.V. Tran, H. Tayara, K.T. Chong, Recent studies of artificial intelligence on in silico drug distribution prediction, Int. J. Mol. Sci. 24(2023), 1815.
|
| [186] |
J. Jones, R.D. Clark, M.S. Lawless, et al., The AI-driven drug design (AIDD) platform: An interactive multi-parameter optimization system integrating molecular evolution with physiologically based pharmacokinetic simulations, J. Comput. Aided Mol. Des. 38(2024), 14.
|
| [187] |
M.B. Afridi, H. Sardar, G. Serdaroglu, et al., SwissADME studies and Density d Functional Theory (DFT) approaches of methyl substituted curcumin derivatives, Comput. Biol. Chem. 112(2024), 108153.
|
| [188] |
S. Zhai, R. Wang, J. Wang, et al., Curcumol: A review of its pharmacology, pharmacokinetics, drug delivery systems, structure-activity relationships, and potential applications, Inflammopharmacology 32(2024) 1659e1704.
|
| [189] |
I. Semenyuta, O. Golovchenko, O. Bahrieieva, et al., Synthesis, characterization, in vitro anticancer evaluation, ADMET properties, and molecular docking of novel 5-sulfanyl substituted (thiazol-4-yl)-phosphonium salts, ChemMedChem 19(2024), e202400205.
|
| [190] |
R.D. Hernandez, F.A.F. Genio, J.R. Casanova, et al., Antiproliferative activities and SwissADME predictions of physicochemical properties of carbonyl groupmodified rotenone analogues, ChemistryOpen 13(2024), e202300087.
|
| [191] |
S. Postel-Vinay, V.K. Lam, W. Ros, et al., First-in-human phase I study of the OX40 agonist GSK3174998 with or without pembrolizumab in patients with selected advanced solid tumors (ENGAGE-1), J. Immunother. Cancer 11(2023), e005301.
|
| [192] |
S. Piperno-Neumann, M.S. Carlino, V. Boni, et al., A phase I trial of LXS196, a protein kinase C (PKC) inhibitor, for metastatic uveal melanoma, Br. J. Cancer 128(2023) 1040e1051.
|
| [193] |
L. Ortega-Paz, S. Giordano, D. Capodanno, et al., Clinical pharmacokinetics and pharmacodynamics of CSL112, Clin. Pharmacokinet. 62(2023) 541e558.
|
| [194] |
S. Bianzano, A. Henrich, L. Herich, et al., Efficacy and safety of the ghrelin-Oacyltransferase inhibitorBI 1356225 in overweight/obesity: Data from two phase I, randomised, placebo-controlled studies, Metabolism 143(2023), 155550.
|
| [195] |
E.N. Feinberg, E. Joshi, V.S. Pande, et al., Improvement in ADMET prediction with multitask deep featurization, J. Med. Chem. 63(2020) 8835e8848.
|
| [196] |
H. Cai, H. Zhang, D. Zhao, et al., FP-GNN: A versatile deep learning architecture for enhanced molecular property prediction, Brief. Bioinform. 23(2022), bbac408.
|
| [197] |
V. Thumma, V. Mallikanti, R. Matta, et al., Design, synthesis, and cytotoxicity of ibuprofen-appended benzoxazole analogues against human breast adenocarcinoma, RSC Med. Chem. 15(2024) 1283e1294.
|
| [198] |
B. Tang, S.T. Kramer, M. Fang, et al., A self-attention based message passing neural network for predicting molecular lipophilicity and aqueous solubility, J. Cheminform. 12(2020), 15.
|
| [199] |
J. Veeraraghavan, C. De Angelis, J.S. Reis-Filho, et al., De-escalation of treatment in HER2-positive breast cancer: Determinants of response and mechanisms of resistance, Breast 34(2017) S19eS26.
|
| [200] |
H. Lin, R. Li, Z. Liu, et al., Diagnostic efficacy and therapeutic decision-making capacity of an artificial intelligence platform for childhood cataracts in eye clinics: A multicentre randomized controlled trial, EClinicalMedicine 9(2019) 52e59.
|
| [201] |
N. Li, L. Cui, H. Ma, et al., Osteopontin is highly secreted in the cerebrospinal fluid of patient with posterior pituitary involvement in Langerhans cell Histiocytosis, Int. J. Lab. Hematol. 42(2020) 788e795.
|
| [202] |
C. Adamichou, S. Georgakis, G. Bertsias, Cytokine targets in lupus nephritis: Current and future prospects, Clin. Immunol. 206(2019) 42e52.
|
| [203] |
J.H.A. Creemers, A. Ankan, K.C.B. Roes, et al., In silico cancer immunotherapy trials uncover the consequences of therapy-specific response patterns for clinical trial design and outcome, Nat. Commun. 14(2023), 2348.
|
| [204] |
M. Zanin, I. Chorbev, B. Stres, et al., Community effort endorsing multiscale modelling, multiscale data science and multiscale computing for systems medicine, Brief. Bioinform. 20(2019) 1057e1062.
|
| [205] |
F.T. Musuamba, I. Skottheim Rusten, R. Lesage, et al., Scientific and regulatory evaluation of mechanistic in silico drug and disease models in drug development: Building model credibility, CPT Pharmacometrics Syst. Pharmacol. 10(2021) 804e825.
|
| [206] |
A. Ramella, F. Migliavacca, J.F. Rodriguez Matas, et al., Applicability assessment for in-silico patient-specific TEVAR procedures, J. Biomech. 146(2023), 111423.
|
| [207] |
C. Montemagno, J. Durivault, C. Gastaldi, et al., A group of novel VEGF splice variants as alternative therapeutic targets in renal cell carcinoma, Mol. Oncol. 17(2023) 1379e1401.
|
| [208] |
A. Giaretta, G. Petrucci, B. Rocca, et al., Physiologically based modelling of the antiplatelet effect of aspirin: A tool to characterize drug responsiveness and inform precision dosing, PLoS One 17(2022), e0268905.
|
| [209] |
A. Branen, Y. Yao, M.V. Kothare, et al., Data driven control of vagus nerve stimulation for the cardiovascular system: An in silico computational study, Front. Physiol. 13(2022), 798157.
|
| [210] |
H. Zhang, M. Yin, Q. Liu, et al., Machine and deep learning-based clinical characteristics and laboratory markers for the prediction of sarcopenia, Chin. Med. J. 136(2023) 967e973.
|
| [211] |
M. Squires, X. Tao, S. Elangovan, et al., Deep learning and machine learning in psychiatry: A survey of current progress in depression detection, diagnosis and treatment, Brain Inform. 10(2023), 10.
|
| [212] |
M. Bertolini, M. Mullen, G. Belitsis, et al., Demonstration of use of a novel 3D printed simulator for mitral valve transcatheter edge-to-edge repair (TEER), Materials (Basel) 15(2022), 4284.
|
| [213] |
L. Swift, C. Zhang, O. Kovalchuk, et al., Dual functionality of the antimicrobial agent taurolidine which demonstrates effective anti-tumor properties in pediatric neuroblastoma, Invest. New Drugs 38(2020) 690e699.
|
| [214] |
E. Makarev, A.D. Schubert, R.R. Kanherkar, et al., In silico analysis of pathways activation landscape in oral squamous cell carcinoma and oral leukoplakia, Cell Death Discov. 3(2017), 17022.
|
| [215] |
V. Saloura, E. Izumchenko, Z. Zuo, et al., Immune profiles in primary squamous cell carcinoma of the head and neck, Oral Oncol. 96(2019) 77e88.
|
| [216] |
J.T. Beck, M. Rammage, G.P. Jackson, et al., Artificial intelligence tool for optimizing eligibility screening for clinical trials in a large community cancer center, JCO Clin. Cancer Inform. 4(2020) 50e59.
|
| [217] |
T. Haddad, J.M. Helgeson, K.E. Pomerleau, et al., Accuracy of an artificial intelligence system for cancer clinical trial eligibility screening: Retrospective pilot study, JMIR Med. Inform. 9(2021), e27767.
|
| [218] |
L. Mueller, P. Berhanu, J. Bouchard, et al., Application of machine learning models to evaluate hypoglycemia risk in type 2 diabetes, Diabetes Ther. 11(2020) 681e699.
|
| [219] |
M. Bogart, Y. Liu, T. Oakland, et al., Evaluating triple therapy treatment pathways in chronic obstructive pulmonary disease (COPD): A machinelearning predictive model, Int. J. Chron. Obstruct. Pulmon. Dis. 17(2022) 735e747.
|
| [220] |
J.S. Berger, L. Haskell, W. Ting, et al., Evaluation of machine learning methodology for the prediction of healthcare resource utilization and healthcare costs in patients with critical limb ischemia a is preventive and personalized approach on the horizon? EPMA J. 11(2020) 53e64.
|
| [221] |
K.G. Larsen, J. Areberg, D.O. Åstrom, Are self-reported and self-monitored € adherence good proxies for reaching relevant plasma concentrations?: Experiences from a study of anti-depressants in healthy volunteers, Clin. Trials 18(2021) 505e510.
|
| [222] |
D.L. Labovitz, L. Shafner, M. Reyes Gil, et al., Using artificial intelligence to reduce the risk of nonadherence in patients on anticoagulation therapy, Stroke 48(2017) 1416e1419.
|
| [223] |
E.E. Bain, L. Shafner, D.P. Walling, et al., Use of a novel artificial intelligence platform on mobile devices to assess dosing compliance in a phase 2 clinical trial in subjects with schizophrenia, JMIR Mhealth Uhealth 5(2017), e18.
|
| [224] |
A. Datti, Academic drug discovery in an age of research abundance, and the curious case of chemical screens toward drug repositioning, Drug Discov. Today 28(2023), 103522.
|
| [225] |
L.A.B. Porto, M.A.F. Grossi, E.S. de Alecrim, et al., Deep venous thrombosis in ^ patients with erythema nodosum leprosum in the use of thalidomide and systemic corticosteroid in reference service in Belo Horizonte, Minas Gerais, Case Rep. Dermatol. Med. 2019(2019), 8181507. C. Fu and Q. Chen Journal of Pharmaceutical Analysis 15(2025) 10124820
|
| [226] |
S. Copley, P.E. Yassa, A.M. Batterham, et al., A clinical evaluation of the accuracy of an intrathecal drug delivery device, Neuromodulation 26(2023) 1240e1246.
|
| [227] |
H. Watanabe, T. Hattori, A. Kume, et al., Improved Parkinsons disease motor score in a single-arm open-label trial of febuxostat and inosine, Medicine 99(2020), e21576.
|
| [228] |
D. DeKarske, G. Alva, J.L. Aldred, et al., An open-label, 8-week study of safety and efficacy of pimavanserin treatment in adults with Parkinson’s disease and depression, J. Parkinsons Dis. 10(2020) 1751e1761.
|
| [229] |
M. Saber-Ayad, S. Hammoudeh, E. Abu-Gharbieh, et al., Current status of baricitinib as a repurposed therapy for COVID-19, Pharmaceuticals (Basel) 14(2021), 680.
|
| [230] |
P. Richardson, I. Griffin, C. Tucker, et al., Baricitinib as potential treatment for 2019-nCoV acute respiratory disease, Lancet 395(2020) e30ee31.
|
| [231] |
A.C. Kalil, J. Stebbing, Baricitinib: The first immunomodulatory treatment to reduce COVID-19 mortality in a placebo-controlled trial, Lancet Respir. Med. 9(2021) 1349e1351.
|
| [232] |
A. Kovari, Explainable AI chatbots towards XAI ChatGPT: A review, Heliyon 11(2025), e42077.
|
| [233] |
J.M. Brandenburg, B.P. Müller-Stich, M. Wagner, et al., Can surgeons trust AI? Perspectives on machine learning in surgery and the importance of eXplainable Artificial Intelligence (XAI), Langenbecks Arch Surg. 410(2025), 53.
|
| [234] |
F. Wong, E.J. Zheng, J.A. Valeri, et al., Discovery of a structural class of antibiotics with explainable deep learning, Nature 626(2024) 177e185.
|
| [235] |
Q. Wang, K. Huang, P. Chandak, et al., Extending the nested model for usercentric XAI: A design study on GNN-based drug repurposing, IEEE Trans. Visual. Comput. Graphics 29(2023) 1266e1276.
|
| [236] |
Y. Gu, Z. Yu, Y. Wang, et al., admetSAR3.0: A comprehensive platform for exploration, prediction and optimization of chemical ADMET properties, Nucleic Acids Res. 52(2024) W432eW438.
|
| [237] |
M. Picard, M. Leclercq, A. Bodein, et al., Improving drug repositioning with negative data labeling using large language models, J. Cheminform. 17(2025), 16.
|
| [238] |
K. Raman, R. Kumar, C.J. Musante, et al., Integrating model-informed drug development with AI: A synergistic approach to accelerating pharmaceutical innovation, Clin. Transl. Sci. 18(2025), e70124.
|